Тут теоретики обидятся. «Опыт показывает, что у дырки даже масса есть, — заявят они. — Про циклотронный резонанс, небось, не слышали?» Вот те раз! Да в нашей деревне про него частушки поют:
Нашенские частушки — это не абы что, это пласт народной мудрости! Кстати, хотите частушку про коллайдер? Её, правда, почти всю придётся «запикивать», лишь четыре слова и останется… Ну, хорошо, в другой раз. Вернёмся к вашим дыркам и посмотрим, что там циклотронный резонанс «показывает». Действительно, в магнитном поле свободные заряженные частицы выписывают окружности, ортогональные вектору магнитной индукции. Выписывают они их с циклотронной частотой, в выражение для коей входит масса частицы. Как же нам везёт: узнав циклотронную частоту, мы узнаем эту массу! А частота находится по резонансному поглощению СВЧ-волны. Ну, вот, помещают в магнитное «поле» твёрдый диэлектрик и полагают, что свободные электроны и дырки начинают в нём хороводы водить, аки в вакууме. Куды ж, мол, деваться — пики-то резонансного поглощения СВЧ конкретно наблюдаются! Только эти пики немного чудные: для электронов и для дырок получается не по одному пику, а по целому набору. Приходится классифицировать электроны и дырки по массовым категориям — почти как боксёров. Представляете — вот дырки легчайшей массовой категории! А вот дырки с первой полусредней массой! А вот — дырки-супертяжеловесы! Но ведь опыт «показывает» ещё больше — если бдительно присмотреться. Оказывается, при повороте образца относительно вектора магнитной индукции, пики резонансного поглощения СВЧ сдвигаются, и все те разношёрстные массы дырок получаются плавающими. Узнав об этом, теоретики пришли в неописуемый восторг и сделали вывод: массы свободных электронов и дырок в полупроводниках являются тензорными величинами. Это означает, белочки и зайчики, что масса той же полусредней дырки не равна какому-то одному значению, а зависит от направления. Нет, не от направления движения, и не от направления действия силы — а просто от направления. Непонятно? Сейчас Буратино вам пояснит. Помните, Мальвина давала ему урок арифметики: «У вас в кармане два яблока…» А он бы ей в ответ: «Врёте! У меня в кармане — ха-ха! — на север — одно яблоко, на восток — три, а вверх — аж три с половиной!» А она: «Ах!.. Артемон, Артемон! Отведи этого Дуремара… то есть, этого гадкого мальчишку в чулан!»
Высокая наука, что с неё взять… Даже детям, которые «академиев не кончали», понятно, что не могут свободные электроны выписывать кренделя в диэлектрическом кристалле! А вот зарядовые разбалансы — могут. Причём, как отрицательные, так и положительные. В условиях магнитного «поля», они мигрируют себе по замкнутым цепочкам атомов. Если атомы образуют кристаллическую решётку, эти цепочки миграций могут иметь дискретные длины, к тому же зависящие от ориентации кристалла относительно вектора магнитной индукции — с соответствующими частотами кручения-верчения по этим цепочкам. Вот вам и набор плавающих пиков поглощения СВЧ. И тензорными массами не надо маяться. Лепота!
Ну, у кого-то — лепота, а у кого-то — слепота. Если образец демонстрирует отрицательную холловскую разность потенциалов, то считается, что в нём доминируют свободные электроны. А если положительную, то — «свободные дырки». В первом случае говорят: «полупроводник n-типа», а во втором — «p-типа». Хорошо известно, что электропроводность полупроводников растёт с увеличением температуры. «Это потому, — объясняют теоретики, — что свободных носителей становится больше». Свежо страдание, а лечится с трудом! Честный процент термической ионизации атомов в образце на порядок меньше того, который обеспечивал бы электропроводность чистых полупроводников. Пришлось опять прибегать к методам высокой науки. Нас уверяют, что у атомов, образующих полупроводник, энергия ионизации на порядок меньше, чем у тех же атомов в свободном состоянии. Такой ход мысли понятен. Только, любезные, у вас получается, что, при образовании полупроводникового кристалла из отдельных атомов, бесследно исчезает почти вся энергия связи самых внешних атомарных электронов — по несколько электрон-вольт на атом. Это гораздо больше, чем, например, превращения энергии при детонации. И никто не вздрагивает!