Выбрать главу

«Тем хуже для Природы!» — подбадривали себя теоретики. Заладили: «в металлах электронный газ, электронный газ…» Сейчас мы покажем, какой там «электронный газ». Помните мультик про козлёнка, который умел считать до десяти? Ну, вот. В справочниках даны плотности металлов и их атомные массы. Этих данных достаточно, чтобы рассчитать средние расстояния между атомами в металлических кристаллах. А ещё в справочниках даны экспериментальные значения радиусов атомов металлов. Остаётся применить метод пристального вглядывания — и убедиться в том, что в металлах средние междуатомные расстояния близки к величине удвоенного атомного радиуса. Вот те раз! Это означает, что кристаллическая решётка металла формируется при непременном участии самых внешних атомарных электронов! Т.е. эти электроны конкретно входят в состав атомов, а не в состав электронного газа!

Дорогой читатель, заметьте: мы не говорим, что свободных электронов в металлах совсем нет. Они есть, но… короче, их очень мало. Мы даже можем сказать — насколько очень. А помогут нам в этом те самые Толмен и Стюарт, которые изящненько доказали, что свободные электроны в металлах таки есть. Хорошенько заэкранировавшись от магнитного поля Земли, они намотали на катушку длинную и тонкую медную проволоку, концы которой присоединили к гальванометру. Катушку с проволокой приводили в быстрое вращение, а потом — хряп! — резко останавливали. И гальванометр регистрировал слабый импульс тока. Деваться некуда: этот импульс тока давали заряженные частицы, двигавшиеся в проволоке по инерции после остановки вращения. А что это за частицы? Извольте: во-первых, направление импульса тока указывало на отрицательный заряд этих частиц. Во-вторых, рассчитывался их удельный заряд — он оказался таким же, как и у частичек катодных лучей. Ну, тогда однозначно, это электроны! Причём — свободные, если они там ухитряются двигаться по инерции. Всё? Нет, не всё. Ещё можно было рассчитать и количество этих свободных электронов — но Толмен и Стюарт об этом умолчали. Может, неспроста? Ведь из их данных получается, что в меди — одном из лучших проводников — один свободный электрон приходится не на десять атомов, не на сотню их и даже не на тысячу, а на полтора-два миллиона! «Беда, беда, конец концепции газа свободных электронов!»

Видите, так и есть: за редчайшим исключением, каждый электрон в металле входит в состав того или иного атома — и, значит, структура решётки держится не на газе свободных электронов, а на обычных химических связях. Впрочем, на не совсем обычных. Помните, есть металлы, у атомов которых — всего один валентный электрон? Такой атом может образовать одну химическую связь, а для поддержания трёхмерной решётки требуется, как минимум, три связи на атом. Тупик, что ли? Наоборот, выход на оперативный простор! Конечно, атом с одним валентным электроном не может образовать три связи одновременно. Но он может образовывать их попеременно, связываясь с соседями по очереди. Для этого, статусы внешних электронов в атоме должны циклически переключаться (чисто программными средствами): побыл ты какое-то время валентным, т.е. способным создать связь — передай этот статус другому, и т.д. Куча атомов с такими циклическими переключениями направленных валентностей вполне способна поддерживать трёхмерную структуру. Только химические связи в такой структуре — не стационарные, а переключаемые, и структура является динамической.

В это с трудом верится? Знаете, у нас тоже поначалу глаза были круглые. А потом как пошли потоком факты, которые объяснялись одним махом! Тут и пластичность-ковкость металлов, в отличие от хрупкости кристаллов с железобетонными химическими связями. Тут и потрясающая химическая агрессивность чистых поверхностей металлов. Тут и проникновение атомов из одного металлического образца в другой, когда они сильно прижаты друг к другу. Тут и лёгкое проникновение в подогретые металлические образцы атомов примесей, например, углерода. Тут и убийственный факт нестабильности молекул металлов: пары металлов — конкретно одноатомны. Жуть какая-то: если атом металла имеет один валентный электрон, то почему бы двум таким атомам не соединиться в стабильненькую двухатомную молекулу? Что мешает? А то и мешает, что электроны в атомах металлов являются валентными по очереди. Если даже два таких атома ухитрятся и успеют сцепиться в молекулу, то, при первом же переключении валентного статуса, эта сцепка развалится. Между прочим, частота этих валентных переключений является важной характеристикой металла — от неё зависят его механические и химические свойства. Причём, эта частота изменяется с изменением температуры, и свойства металла — соответственно, тоже. Иногда это выглядит впечатляюще. В Антарктиде обнаружилось: при –70оС, тонкий дюралевый лист можно резким движением «порвать как бумагу», а ещё при такой температуре дюраль отлично горит на открытом воздухе!