Выбрать главу

Из всего зоопарка элементарных частиц, описываемых Стандартной моделью, только одна — бозон Хиггса — до сих пор не обнаружена. Слишком велика его масса, в единицах энергии оцениваемая интервалом от ста до тысячи гигаэлектрон-вольт (ГэВ). Такие энергии были пока недоступны ни одному из земных ускорителей.

Но на большом адронном коллайдере, который должен начать работу в ноябре этого года в ЦЕРНЕ (неподалеку от Женевы), бозон Хиггса уже может быть получен. Без бозона Хиггса нельзя объяснить возникновение масс всех остальных элементарных частиц Стандартной модели, и если с ним что-то не заладится, всю модель придется серьезно пересматривать.

Так что пока суд да дело, теоретики готовятся к худшему. И в одной из уже развитых альтернативных теорий (так называемой «следующей за минимальной суперсимметричной стандартной моделью»), которая лишь удваивает число элементарных частиц, имеется уже не один, а целых семь бозонов Хиггса. Самый легкий из них может иметь «смешную» массу около 200 МэВ. Его, возможно, и наблюдали в HyperCP-экспериментах на ускорителе в Лаборатории Ферми.

В этих опытах, специально поставленных для поиска отличий между веществом и антивеществом, пучок протонов бомбардировал мишень. И среди миллионов зафиксированных за несколько лет реакций с элементарными частицами случилось всего три крайне редких необычных события. В них так называемая сигма плюс частица распалась на протон и пару мюон-антимюон. Такая реакция свидетельствует в пользу существования псевдоскалярного бозона Хиггса с массой 214 МэВ и пока не имеет других приемлемых объяснений.

Впрочем, трех таких событий слишком мало, чтобы считать эксперименты надежными. Да и гипотеза подобного рода уже не первая. Ранее теоретики объяснили один из необычных пиков на энергетических спектрах, полученных в той же серии экспериментов, с помощью другой суперсимметричной теории с пятью бозонами Хиггса. Так что, пожалуй, стоит подождать вестей из CERN и не суетиться раньше времени. Лучше уж пусть останется Стандартная модель и отыщется один тяжелый бозон Хиггса, чем появится множество легких бозонов и потребуется более сложная модель, их описывающая. ГА

Седьмая пуля

Физикам из Университета Небраски в Линкольне впервые удалось наблюдать квантование электрического сопротивления в зависимости от внешнего магнитного поля у кобальтового контакта атомных размеров. Этот эффект, в принципе, позволяет изготовить считывающую магнитную головку из нескольких атомов и может стать основой магнитных запоминающих устройств будущих поколений.

Магнитные головки современных винчестеров работают на открытом в 1988 году так называемом гигантском магниторезистивном эффекте — сильной зависимости электрического сопротивления специальной тонкопленочной структуры от внешнего магнитного поля. Новый квантовый эффект, предсказанный теоретиками из того же университета в 2005 году, обещает магнитным устройствам хранения информации качественный скачок. Авторы окрестили его «баллистической анизотропной магниторезистивностью». Анизотропной она названа из-за зависимости эффекта от взаимной ориентации направлений магнитного поля и электрического тока в проводнике.

Баллистическим называют движение электронов, которые летят в проводнике по прямой, как пуля в стволе, не рассеиваясь. Поскольку с точки зрения квантовой теории электрон, как и любая частица, одновременно еще и волна, баллистический режим возникает, если размеры проводника уменьшаются до длины волны электронов проводимости. Такой тонкий проводник из ферромагнитного кобальта удалось вырастить на кремниевой подложке между парой заточенных, как стрелы, золотых контактов с зазором 100 нм. Проводимость (или сопротивление) проводника диаметром в несколько атомов становится дискретной — пропорциональной числу баллистических электронов с допустимой энергией. А это число, в свою очередь, зависит от внешнего магнитного поля, которое в ферромагнитных материалах сдвигает энергетические зоны.

В результате электрическое сопротивление кобальтового нановолокна начинает меняться скачками, то есть квантуется, при плавном изменении внешнего магнитного поля или его направления. В экспериментах, в полном соответствии с теорией, наблюдалось изменение числа проводящих электронов, например, с двух до четырех или с шести до семи в зависимости от геометрии конструкции.

Такая квантовая система идеально подходит для считывания информации с магнитных носителей. При этом размеры состоящей из единственного нановолокна «считывающей головки» и соответственно области намагниченности могут, по крайней мере в принципе, составлять лишь несколько атомных диаметров. А поскольку подобная система работает почти так же, как и современные головки — изменяя свое сопротивление, проблем с внедрением тоже вроде бы не предвидится. Разумеется, все это дело отдаленного будущего. Чтобы считать информацию с нескольких атомов, нужно и само устройство изготовить с атомной точностью, что массовому производству пока не под силу. ГА