Выбрать главу

Уверен, что некоторые из этюдов были бы вполне уместны на выставках «актуального искусства». То, что происходит в абсолютной тишине на экране, иногда странным образом перекликается с андеграундными художественными акциями времен «развитого застоя». В одном из фильмов извивающаяся веревочка переползает с периметра криволинейного треугольника Рело (Reuleaux) на периметр окружности, намекая на абсолютное равенство этих периметров при заметном различии площадей — и это почему-то напомнило мне перформанс, в котором небольшую подмосковную рощу обтягивали по краю то ли бельевой веревкой, то ли упаковочной пленкой.

Безобидные математические теоремы при такой презентации приобретают неожиданную эмоциональную окраску. Во врезках мы приводим кадры из фильмов, но в динамике восприятие совсем иное. «Лестница в бесконечность»[Соавтор идеи фильма — математик Сергей Коновалов из Математического института им. Стеклова РАН, член редколлегии легендарного журнала «Квант»], возводимая одушевленной[На это есть намек в комментариях] строительной техникой в абсолютно пустой и безмолвной вселенной при загадочном участии эдакой мезозойской бабочки размером в полбульдозера, производит почти гипнотическое воздействие. Особенно на тех, кто (подобно мне) не очень настроен вникать в хитроумную игру дробей-слагаемых гармонического ряда 1+1/2+1/3+…, но готов искренне удивиться его образу в виде уходящей в бесконечную пустоту лестницы из кирпичей, скрепленных только геометрией. Образу, имеющему что-то общее с другой популярной в 70-е акцией-парадоксом, когда полсотни людей усаживались друг к другу на колени, выстраиваясь в замкнутое кольцо.

Однако авторы, работая над фильмами «Этюдов», думали совсем о другом. Первый этюд Николай Андреев начал делать в 2002 году для иллюстрации своей исследовательской работы. Незадолго до этого ему удалось решить трудную математическую задачу — найти новые конфигурации в классической проблеме Томсона об устойчивом расположении точечных зарядов на сфере. Точные решения этой задачи неизвестны даже для небольшого количества точек — так, Николай первым нашел решение для двенадцати точек (а для пяти оно не найдено до сих пор). В то же время, регулярно выступая с лекциями перед школьниками, он иногда слышал от них: а что, разве в математике еще не все задачи решены? Николай решил визуализировать задачу Томсона как пример легко объясняемой и притом вполне современной математической проблемы.

Очень быстро он понял, что самостоятельно добиться желаемого качества графики не сможет, и стал искать по форумам в Сети профессионала-трехмерщика. Вскоре за эту работу взялся одессит Михаил Калиниченко — и вот уже несколько лет посвящает ей все свое время. Первый фильм был сделан за три недели, некоторые из последующих отняли месяцы. Сейчас реализовано одиннадцать сюжетов, еще несколько в работе. Авторы делят свои ролики на собственно «фильмы» — сделанные в реалистичном стиле и посвященнные еще не решенным задачам, и «мультфильмы» о доказанных теоремах, использующие «мультграфику». Сайт появился недавно — когда в команду «Этюдов» пришел замечательный веб-дизайнер и программист Роман Кокшаров.

В качестве основного инструмента для создания математических анимаций была выбрана малораспространенная в России, но очень мощная среда разработки Cinema 4D от компании Maxon (у нас интересы Maxon представляет фирма Nemetschek, где и была приобретена «образовательная версия» программы; на «Этюдах» есть раздел «3D-уроки», где с ней можно познакомиться поближе). Оказалось, что эта система идеально приспособлена к некоторым специфическим задачам, часто возникающим при создании математических фильмов. Тем не менее тяжелый и требующий высокой квалификации труд «трехмерщиков» весьма недешев. Финансирование работы Николаю пока удается организовать, но очевидно, что главный энергетический ресурс в этой работе — энтузиазм всех ее участников. Коммерческое использование фильмов пока не планируется — во всяком случае в России.