Физики из Института квантовой электроники Швейцарского Федерального технологического института и Кавендишской лаборатории Кембриджского университета впервые отследили процесс постепенного распада бозе-эйнштейновского конденсата. Детали этого эксперимента изложены в статье Михеля Коля (Michael Kohl) и его коллег, опубликованной в журнале Science.
Бозе-эйнштейновский конденсат, который зачастую называют просто бозе-конденсатом, — это чисто квантовое состояние системы частиц с целым спином (бозонов), возможное только при чрезвычайно низких температурах. Такие системы при охлаждении ниже определенного порога, именуемого критической температурой или температурой вырождения, претерпевают фазовый переход, в результате которого частицы начинают накапливаться в состоянии с нулевым импульсом и нулевой энергией. При дальнейшем понижении температуры доля таких частиц возрастает и при приближении к абсолютному нулю стремится к ста процентам. Частицы бозе-конденсата находятся в одном и том же квантовом состоянии, благодаря чему они теряют индивидуальность и фактически ведут себя как единая квантовая «суперчастица».
Теоретическая возможность существования конденсата была предсказана Альбертом Эйнштейном еще в 1925 году, однако получить его в эксперименте удалось лишь через семьдесят лет. Дело в том, что наилучшими кандидатами для перехода в конденсированное состояние являются сильно разреженные бозонные газы, которые обычно успевают затвердеть еще до достижения критической температуры. Для получения бозе-конденсата газ надо подвести к абсолютному нулю и в то же время предотвратить его кристаллизацию, что является очень непростой задачей. Первый в мире настоящий бозе-конденсат был создан в июне 1995 года группой сотрудников американского Объединенного института лабораторной астрофизики. Экспериментаторы сначала заперли и охладили в магнитной ловушке две тысячи атомов рубидия-87, а затем погасили их импульсы с помощью тормозящего лазерного излучения. Таким путем удалось снизить температуру атомного облачка примерно до 150 нанокельвинов (миллиардных долей градуса по абсолютной шкале), чего достаточно для образования бозе-конденсата.
Охлаждаемый газ не переходит в конденсированное состояние сразу по всему объему. Вычисления показывают, что чуть выше температуры вырождения в нем начинают рождаться и исчезать «пузыри» конденсатной фазы. При дальнейшем охлаждении размеры пузырей растут, а при температуре вырождения они сливаются воедино, образуя стабильный конденсат. При увеличении температуры эти явления должны происходить в обратном порядке, приводя к постепенному исчезновению все более и более мелких очагов конденсата. В теории эти процессы хорошо известны, однако до сих пор никому не удавалось наблюдать их на опыте.
Теперь эта проблема разрешена. Ученые из группы Коля перевели в конденсат четыре миллиона атомов все того же рубидия. Затем они позволили температуре сконденсировавшегося газа повышаться, причем очень медленно, всего на четыре нанокельвина в секунду. Для отслеживания перехода газа из конденсированного состояния в нормальное ученые отключили запирающее магнитное поле в двух небольших областях внутри камеры, где парило газовое облачко. Поскольку находящиеся в пределах этих участков частицы уже ничем не удерживались, они под действием силы тяжести падали в детектор, способный регистрировать единичные атомы.
Показания этого прибора и позволили проверить «пузырную» модель разрушения конденсата. Если внутри детектора встречались потоки атомов, одновременно пришедшие из двух конденсатных пузырей и потому находящиеся в одном и том же квантовом состоянии, они интерферировали подобно волнам. Интерференция могла увеличивать амплитуду их волновой функции, но могла также снижать ее до нуля, и в этом случае детектор вообще не замечал никаких частиц. Если же в детектор попадали атомы конденсата и обычной фазы или одни только нормальные атомы, никакой интерференции не возникало, и прибор попросту подсчитывал атомы поштучно. Меняя дистанцию между зонами с отключенным магнитным полем, экспериментаторы смогли оценить размеры конденсатных пузырей при различных температурах, превышающих критическую. Оказалось, что пузыри ведут себя в соответствии с теорией: при росте температуры они уменьшались и в конце концов исчезали. АЛ
Недавно завершился титанический труд международной команды из восемнадцати математиков, возглавляемой профессором Джеффри Адамсом (Jeffrey Adams) из Мэрилендского университета, по описанию исключительно сложного математического объекта, так называемой группы Ли E8. Четыре года напряженной работы и расчетов на специализированном компьютере в Вашингтонском университете в Сиэтле вылились в 60-гигабайтный научный результат. Авторы гордятся тем, что если их труд напечатать как обычную научную статью мелким шрифтом на бумаге, то ею можно будет накрыть весь Манхэттен.