Выбрать главу

Однако сказать, что эти два «мира графики» не пересекаются, нельзя. В большинстве современных игр наличествуют предпросчитанные заставки, технология изготовления которых ничем не отличается от большого кино. А вот обратное проникновение до недавнего времени было только на стадии разработки 3D-моделей. Ведь 3D-редактор должен в реальном времени отображать постоянно изменяющуюся модель. Поэтому вполне логично, что тут используются технологии, подобные игровым. Правда, если мы вспомним, что OpenGL, одна из двух основных библиотек для разработки 3D-игр, была создана именно для применения в таких задачах, можно усомниться, кто у кого заимствовал технологии. Правда, в дальнейшем большинство нововведений в графике сначала появлялось в игровой индустрии и лишь потом перекочевывало в профессиональные программы, упрощая работу моделлеров и аниматоров и все больше приближая картинку, с которой работает человек, к тому, что увидит зритель.

Потом realtime-алгоритмы «проникли» в производство аниматиков — это небольшие видеоролики, которые обычно создаются до начала съемок и серьезной работой над cg[Computer graphics — компьютерная графика]. Они нужны для согласования того, как режиссер «видит» сцену, с тем, как оператор ее отснимет, и с тем, что и как в последствии предстоит сделать компьютерщикам. Согласитесь, намного проще работать, когда можно взглянуть на окончательный результат, хотя бы и в сильном приближении. Для подобных задач важнее не качество, а оперативность внесения изменений. Иногда их приходится вносить непосредственно на съемочной площадке, когда нет ни желания, ни возможности подождать полчасика, пока «машина думает». В аниматеках чаще всего нет ни теней, ни сложного света, и даже текстуры вполне могут отсутствовать. Современные видеокарты с легкостью справляются с такими задачами.

Теперь перейдем к самому интересному — к финальному рендерингу. И фильмы, и игры состоят из последовательности кадров, при этом в обоих случаях кадр — это проекция трехмерного пространства, каким-то образом заполненного треугольниками (полигонами), на плоскость экрана. Оба действа разбиты на некоторые отрезки, на которых действие происходит в одном и том же окружении. Только в игре этот отрезок называется уровнем, а в кино — планом. Принципиальная разница только в одном — куда будут помещены результаты: на экран или в файл для последующего перенесения на пленку. Получается, что для столь похожих задач используются принципиально разные аппаратные средства (GPU и CPU). Тут, конечно, можно увидеть игру букв GPU — Games, CPU — Cinematograph. Но причина отнюдь не в буквах — для решения этих задач применяются принципиально разные алгоритмы.

Описывать принцип действия GPU, думаю, смысла нет, а вот на технологиях «большого» рендеринга следует остановиться. В некотором роде они стремились как можно в большей степени подражать природе. При расчете освещения, например, часто используется технология, повторяющая естественный ход лучей, с многочисленными отражениями и преломлениями (метод фотонных карт). Для этого из источника света «испускается» большое количество фотонов, а на все объекты натягивается дополнительная текстура, в которой будет храниться информация об освещении. Если фотон попадает на поверхность какого-либо предмета, то он оставляет в его текстуре освещенности след и либо отражается, либо проходит сквозь предмет, преломляясь. После некоторого количества отражений или после того, как энергия фотона стала слишком мала, он умирает. Таким образом, при достаточном количестве фотонов мы получаем кроме основных текстур для объектов еще и текстуру освещенности, которую можно использовать при дальнейшем рендеринге.

Вычислительная сложность этого алгоритма очень высока, ведь надо проследить путь каждого фотона. Зато он прекрасно параллелится — движение всех частиц абсолютно независимо.