Выбрать главу

Получается, что при таком подходе не учитывается влияние установленной между экранами размывающей маски?

— Да, действительно, до появления пиксельных шейдеров смоделировать действие маски в реальном времени не удавалось. Мы даже пытались заказать специальный DSP-процессор для решения этой проблемы, но по ряду причин и он не подошел. А на современных карточках нам удалось смоделировать более сложную нейронную сеть, учитывающую воздействие маски, и добиться производительности в 30 fps.

А есть реальные устройства на основе вашей технологии? Где они применяются?

— Да, есть. Я тогда работал в фирме NeurOK [www.neurok.ru], и было выпущено несколько готовых дисплеев, которые демонстрировались на крупнейших международных выставках, таких как Comdex и Infocomm. Насколько мне известно, было изготовлено несколько игровых автоматов для американского казино, кажется MGM. Нам удалось скооперироваться с одной фирмой, которая производила специальные установки на основе больших параболических зеркал. Если в такую оптическую систему поместить любой монитор, то изображение трансформируется, в результате чего получается иллюзия объема. Ну а когда туда поставили наши дисплеи, объем увеличился многократно.

А почему не удалось дальше раскрутиться?

— Просто рынок пока не готов. Ну, рынка как такового нет. Однажды на Comdex’е к нашему стенду подошел пожилой японец, долго стоял и смотрел, как мы общаемся с посетителями. Потом представился. Оказалось, что он в Sony руководил группой, которая продвигала цветной телевизор. Он сказал, что столкнулся с теми же проблемами, что и мы. Качество первых цветных телевизоров было низким, и все спрашивали: а зачем это нужно? Ведь на черно-белом телевизоре все и так прекрасно видно! Прошло время. И где вы сейчас найдете черно-белый телевизор?

Нам потенциальные производители и консьюмеры говорили, что все хорошо, только глубина изображения мала. То есть хочется, чтобы изображение прямо на тебя высовывалось. Но ведь нигде в жизни такого объема нет! Большой объем мы видим только тогда, когда объект приближается к нам вплотную, а при этом мы сразу начинаем нервничать.

Я сотрудничаю с оптиками из МИИГАиК[Московский Государственный университет геодезии и картографии, www.miigaik.ru], фотограмметрия — это их хлеб, а там стереоизображение используется для восстановления трехмерной структуры. Для обработки снимков специалисты обычно используют стереосистему со специальными очками. Так вот, они мне говорили, что относительно небольшой процент людей может долго работать с такой системой. То есть человек отработал день-второй-третий — и все, жалуется на постоянные головные боли. Мозг просто не может этого выносить, и как говорят, «глаза ломаются». Страшное напряжение, зачем это нужно?

А объясняется все очень просто: в реальной жизни люди привыкли к небольшому параллаксу. Я знакомился с медицинскими исследованиями — для комфортного восприятия угол схождения глаз не должен превышать двух градусов. Если больше, начинает болеть голова.

А насколько реалистичным получается изображение на вашей системе?

— Полный реализм. Глаз четко различает, что это объем. На выставках я обычно сначала делал один экран прозрачным, и видно — картинка плоская. Включаю второй — сразу появляется объемность. Но сказать, что изображение высовывается так, что хочется его потрогать, не могу — этого, естественно, нет. Хотя можно подобрать такие исходные изображения, что глубина будет казаться больше, но в среднем — так, как мы в жизни и видим.

Насколько я знаю, кроме вашей есть еще технологии 3D-дисплеев, не требующие очков.

— Да, сейчас много разных систем выпускается. Например, Sharp производит панели с микролинзовым растром. Но они так устроены, что чуть голову в сторону сдвинешь — нет объема. Еще чуть в сторону — у вас изображение для левого глаза поменялось местами с изображением для правого. Область, в которой видно стерео, очень узкая. Причем настолько, что надо сидеть не шелохнувшись. А некоторые фирмы даже выпускают устройства для слежения за глазами зрителя. Когда наблюдатель меняет положение, то либо экран поворачивается, либо на экран выводится подстроенное изображение.

А у нашего нейродисплея допустимая зона достаточно большая. На выставках по два-три человека одновременно смотрят. Кто по центру, тот вообще классно видит, кто сбоку — чуть похуже (у границы экрана заметно, что есть два раздельных изображения). Отошел подальше — вообще видно прекрасно.

А у вас были еще какие-нибудь проекты с использованием GPU? Нейросетей на GPU?

— Были еще две задачи, связанные с 3D. Во-первых, проекционная система, в которой объем также был виден без очков. В ней использовались четыре проектора, находившиеся на расстоянии нескольких метров от специального экрана. Поскольку проекторы были разнесены по горизонтали на десятки сантиметров, при сведении в одну область экрана возникали трапецеидальные искажения. Для их компенсации был разработан специальный алгоритм. На каждый проектор по очереди выводился тестовый прямоугольник, фиксировавшийся камерой. Изображение анализировалось программой, определявшей координаты углов прямоугольника, а затем рассчитывались координаты плоскости, на которую нужно спроецировать изображение для компенсации искажений. После этого на проекторы выводились результаты наложения исходных изображений на соответствующие плоскости, полученные с помощью DirectX.

Вторая задача была связана с преобразованием обычных фильмов в объемные. В мире существует несколько компаний, которые могут это делать, но только с помощью оператора-человека. Нам удалось разработать алгоритмы, позволяющие с неплохим качеством преобразовывать 2D в 3D в реальном времени. Здесь тоже не обошлось без GPU и DirectX.

Сейчас мы разрабатываем систему для распознавания лиц. Как раз при помощи нейронных сетей на графических процессорах. От нее требуется очень высокая производительность. Аналогичные алгоритмы можно будет применять и для распознавания отпечатков пальцев, сетчатки глаза и т. п. Но это пока на стадии проектирования.

В прошлом году у меня на ВМиК была дипломница, Маша Карасева, мы с ней решали задачу восстановления структуры плазмы в установках ТОКАМАК по видеоизображению. Она, правда, использовала OpenGL, и скорость там была, конечно, не такая высокая, как в DirectX, но основные принципы те же самые.

Задача такова: по снимку плазмы, имеющей форму тора, нужно установить ее внутреннюю структуру. Задачи такого типа называются обратными: нам известен результат, и нужно узнать, при каких условиях он получен. Прямая задача проста: каждый слой плазмы светится по-разному, и если нам известно сечение плазмы, можно построить набор вложенных тороидальных поверхностей с заданной прозрачностью и потом «нарисовать» полученный объект, например с помощью OpenGL. Нас же интересовала обратная задача — получение сечения плазмы. Для ее решения сечение в начальный момент формировалось случайным образом, и по нему решалась прямая задача — получение «фотографии» плазмы. Построенное изображение сравнивалось с реальным, вычислялись отличия, сечение корректировалось, и так далее, до достижения необходимой точности.

И что смешно, мы несколько раз докладывали об этой работе, и многие не могли понять, в чем особенность предложенного алгоритма. Понимаете, это ведь очень необычно: получается, что обратная задача томографии решается прямо на видеокарте.

Кстати, я считаю, что вообще многие задачи, родственные томографии, естественным образом ложатся на карту. На кафедре математической физики факультета ВМиК группа профессора А. В. Гончарского занималась проблемами вычислительной диагностики, в том числе и контролем печатных плат. Платы уже давно стали многослойными, и если появлялся брак во внутренних слоях, его невозможно было увидеть. Платы просвечивали под разными углами и решали задачу томографии: восстанавливали структуру каждого слоя. И дальше уже смотрели, какова толщина дорожек, конфигурация и пр. Расчеты проводили еще на БЭСМ-6, и алгоритм работал часами. А на GPU можно делать контроль практически в реальном времени.