Выбрать главу

Так что я пока не вижу в компьютере серьезного конкурента живому переводчику. Не обойтись им без нас. К сожалению.

ТЕХНОЛОГИИ: Из света в тень

Автор: Максим Стеклов

Нечасто случается, что технология, призванная решить определенные проблемы, не только их не решает, но и усугубляет. Но именно это случилось с технологией изображений с расширенным динамическим диапазоном (HDRI). Изначально предназначенная для повышения реалистичности фотографий и 3D-изображений, HDRI неожиданно стала удобным инструментом для творческого самовыражения и интересной игрушкой для многих любителей фотографии. Фотографы с удовольствием экспериментируют с новой технологией, превращая банальные пейзажи в изображения, напоминающие скорее картины, чем фотоснимки.

А если переведенные в пространство RGB HDR-кадры меньше похожи на реальность, чем обычные карточки с заваленными тенями и пересвеченными лицами... Наверное, это проблемы реальности. 

Дело о недостаточной точности

Прежде чем перейти к рассказу о HDRI, необходимо вкратце рассказать, как записываются, хранятся и отображаются цифровые изображения сегодня. А также о том, как фиксирует изображение человеческий глаз.

В модели RGB любой цвет кодируется тройкой целых чисел, описывающих соответственно интенсивность зеленого, синего или красного каналов. Например, черный цвет может быть представлен как (0, 0, 0), а белый — находящийся на противоположном конце шкалы — как (255, 255, 255). Таким образом, для отображения любой картинки у нас есть 16,7 млн. оттенков, а сама картинка называется восьмибитной (или 24-битной), потому что на каждый канал нам требуется 8 бит, а каждая точка изображения кодируется с помощью трех 8-битных чисел. Динамический диапазон (здесь: отношение максимальной интенсивности цвета к минимальной) такой цветовой модели составляет 28:1, или 256:1.

Для 16-битных RGB-изображений (когда на каждый канал отводится уже не один байт, а два) теоретический динамический диапазон заметно больше и составляет 216:1, или 65536:1. Это впечатляет, если не вспоминать, что человеческое зрение способно улавливать освещение от 10-6 кд/кв. м до 108 кд/кв. м (), то есть имеет абсолютный диапазон 1014:1 (правда, человеческий глаз не может регистрировать свет во всем диапазоне одновременно; максимальный охват составляет от 10000 до 30000 к 1).

Принципиальная недостаточность цветового пространства RGB усугубляется скромными аппаратными возможностями современных сенсоров и отображающих устройств. Реальная чувствительность сенсоров в цифровых фотокамерах, как правило, не превышает 1000:1 (теоретически она может быть и выше, в зависимости от матрицы, но ограничена сверху шумовыми эффектами). На выходе камера может давать хоть 12-битный, хоть 112-битный RAW, однако на динамический диапазон записанного в файл изображения это не повлияет, поскольку в нем просто физически нет необходимой информации.

Мониторов, способных корректно отобразить 48-битную картинку с заявленным динамическим диапазоном, скажем, 10000:1, сегодня также не существует (за редкими и дорогими исключениями, но о них ниже).

Дополнительный минус модели RGB (и, например, CMYK) в том, что она виртуальна и не привязана к реальным значениям, то есть является физически некорректной — и не может быть приведена к корректной модели без потерь, раз уж все показатели в ней задаются целыми числами, и их набор ограничен. Исправляет эту ситуацию схема HDRI (High Dynamic Range Imaging), в которой на каждый цветовой канал отводится 16 или 32 бита, а характеристики задаются не целыми, а вещественными числами, что позволяет полностью описывать доступный человеческому зрению диапазон с нужным уровнем детализации. Все остальные модели (включая RGB) называют моделями с низким динамическим диапазоном (Low Dynamic Range).