Любой, кто хотя бы раз держал в руках фотоаппарат, сталкивался с тем, что при неверно подобранной экспозиции одни снимки получаются слишком темными, а другие – слишком светлыми. Однако даже оптимально выставленные параметры экспозиции не помогут, если у сцены, которую мы хотим снять, слишком широкий яркостный диапазон: или хорошо получатся детали, лежащие в тени, но засветятся светлые участки, или будут достоверно переданы светлые участки, но потеряются те, которые освещены недостаточно.
До последнего времени фотографу оставалось либо подобрать другую композицию, с меньшей разницей между светом и тенью, либо сложить штатив и пойти домой.
Наглядный пример подобной «неудобной» композиции – снимок из затемненной арки, сделанный в солнечный день. Человеческий глаз прекрасно различает и детали внутренней отделки, и то, что находится за ее пределами. Однако на снимке хорошо получится либо интерьер (при засвеченном выходе из туннеля), либо пейзаж, обрамленный в черную аркоподобную рамку (не исключены и промежуточные варианты, когда и в арке, и за ее пределами что-то можно разглядеть, но они обычно не более приятны глазу, нежели описанные крайности).
Казалось бы, технология HDRI создана как раз для таких случаев, однако где взять недостающую информацию об общем яркостном диапазоне сцены? Ответ очевиден: нужно сделать несколько снимков с разными параметрами экспозиции и взять информацию из них, создав единое изображение с расширенным динамическим диапазоном.
Любую инструкцию о создании HDR-изображений в домашних условиях можно свести к следующим пунктам:
1. Установите фотоаппарат на штатив.
2. Сделайте несколько снимков с разной экспозицией так, чтобы максимально охватить диапазон сцены (например: –2EV, оптимальное значение экспозиции, +2EV).
3. Полученные файлы совместите в одном из программных продуктов для работы с HDR-изображениями (HDRShop, PhotoMatrix, Photoshop CS2 и т. п.).
4. Преобразуйте ваше HDR-изображение в RGB для просмотра на обычном мониторе.
Первый пункт достаточно очевиден. Так как нам придется совмещать несколько снимков, мы должны обеспечить их максимальную идентичность. По той же причине эта технология не подходит для создания HDR-изображений движущихся объектов. Хотя программное обеспечение предусматривает возможность автоматического выравнивания исходных снимков для последующего их совмещения, эта функция а) может сильно замедлить подготовку HDR-изображения, б) не рассчитана на случаи, когда объект на одном кадре находится в левой части изображения, а на другом – в правой.
Количество совмещаемых снимков во многом зависит от выбранного для подготовки и последующей конвертации HDR пакета и снимаемой сцены, но здравый смысл подсказывает, что независимо от программы, в которой будет производиться совмещение, нужно не менее трех снимков.
Самая большая проблема возникает на четвертом шаге, когда полученное HDR-изображение нужно приводить к печальному, но общему знаменателю. Другими словами, избавляться от плавающей запятой и возвращаться в цветовое пространство RGB, поскольку на непосредственно RGB-мониторе просмотреть HDR-изображение невозможно. Алгоритмы обратной конвертации могут работать как с учетом контекста, в котором размещен пиксел (локальные), так и без оного (глобальные), когда весь динамический диапазон HDR без затей проецируется на RGB.
Возникает вопрос: если задача только в том, чтобы добавить на снимок недостающие детали, то зачем нужны все эти лишние преобразования, раз конечный результат все равно выводится в RGB? Вопрос совершенно правомерен. Мы действительно можем взять всего два изображения (с экспозицией для «теней» и для «светлых областей») и сделать из них одно. Более того, такой подход скорее даст натурально выглядящий снимок, чем совмещение нескольких кадров в HDR и последующая конвертация в RGB. Но, во-первых, на сценах с широким диапазоном такой подход может и не сработать; во-вторых, это не так интересно; а в-третьих, HDR-изображения за последний год-два приобрели популярность, во многом благодаря некоторой искусственности. Во многих случаях ее наверняка можно было бы избежать или хотя бы уменьшить, однако авторы снимков порой специально выставляют настройки так, чтобы придать фотографиям некий налет «нездешности».
Еще один способ обойтись без HDR при вытягивании фотографий – использование в качестве исходника одного файла RAW (который, конечно, содержит избыточную – по сравнению с JPEG или TIFF – информацию об изображении). В результате манипуляций с уровнями экспозиции при конвертации RAW действительно можно получить несколько отличающихся друг от друга изображений, а затем совместить их и создать некую общую картинку, взявшую все самое лучшее от этих полуфабрикатов. Однако недостающая информация о яркостном диапазоне сцены сама по себе ниоткуда не появится. Не исключено, что изображение действительно станет лучше (контрастней), но того же эффекта можно добиться и более простыми средствами. Тем не менее, эта технология многим симпатична, потому что, в отличие от HDR, позволяет «улучшать» кадры, на которых есть движущиеся объекты, да и необходимость в штативе отпадает.
Можно ли автоматизировать процесс создания HDR-изображений? В общем-то, все, что можно автоматизировать, уже автоматизировано. В камере для HDR должен быть настраиваемый автоматический брекетинг экспозиции. Во многих моделях эта функция есть. Все остальное (совмещение RAW-файлов и обратная конвертация) теоретически тоже можно реализовать (и соблазн велик, потому что грамотная обработка HDR в камере выводит цифровые мыльницы на новый уровень качества снимков, а заодно на порядки уменьшает востребованность встроенной вспышки), но и алгоритмы автоматической обратной конвертации пока далеки от совершенства, и не факт, что относительно слабое железо цифровых камер потянет такие преобразования. Как минимум одна HDR-камера существует уже сегодня (SpheroCam HDR), но это дорогое профессиональное устройство, применяемое обычно для создания карт освещенности сцены с целью последующего использования этой информации при 3D-рендеринге.
ОПЫТЫ: TW
Автор: Владимир Гуриев
В жизни много несправедливости. Если с толком и расстановкой приглядеться, то вся жизнь – это одна сплошная несправедливость и, как говорили древние, суета сует. Сначала тебя гонят спать в девять вечера, ни минутой позже, потом заставляют ходить в школу, только освободишься из школы – будь добр, отслужи два года в армии или пять в университете, а когда и это испытание ты, сжав зубы, проходишь, выясняется, что тебе всю жизнь придется работать. Учитывая среднюю продолжительность жизни в России, не каждый мужчина дотянет до пенсионного возраста, но бойцы, которых по дороге потеряли, тоже немногого лишаются: государство дает человеку отдохнуть как раз тогда, когда здоровье уже не позволяет отдохнуть по-настоящему.
На фоне этих безусловно трагических событий мелкие несправедливости глаз никому не режут и воспринимаются как нечто само собой разумеющееся.
Несправедливость, о которой пойдет речь ниже, заметил не я. На нее обратил внимание мой менее пессимистичный товарищ и по совместительству владелец 14-дюймового телевизора. Лично я, когда речь заходит о домашнем кинотеатре, склонен к гигантомании, и от покупки скромной 100-дюймовой панели меня удерживают только скорбные экономические соображения, однако существуют люди, которые трезво оценивают свои жилищные условия, и в эти жилищные условия большие экраны просто не помещаются. Но там, где поместится 14-дюймовый ЭЛТ-телевизор, вполне найдется местечко и для 20-дюймового ЖК-аппарата, так что мой товарищ начал приглядываться к ним и с удивлением обнаружил, что падение цен на ЖК-мониторы не сопровождалось столь же резким падением цен на ЖК-телевизоры. Для того чтобы убедиться в этом, достаточно посмотреть таблицу на соседней странице, в которой приведены спецификации двух продуктов одной и той же компании (это для чистоты эксперимента; за две минуты в Интернете можно убедиться в том, что диспропорция сохраняется независимо от производителя).