Выбрать главу

Особенно интересен нынешний заработок Сэрина. Помимо доходов с рекламы, он получает деньги с… «ненавистников», для которых язвительные высказывания на страницах сайта стали уже чем-то вроде спорта. Некоторые из них предлагают Сэрину деньги за ответы на различные вопросы личного характера. Через четыре месяца, к своему 25-летию, автор надеется вылезти из денежной ямы, расплатившись с долгами. Такой вот получается парадокс – неудачнику платят деньги люди, которые его ненавидят. Впрочем, сам Сэрин уточняет, что это, конечно, «не настоящая» ненависть, люди просто нашли себе новое развлечение. ДП

Даешь 200%

Интригующий доклад сделали ученые из Арагонской национальной лаборатории США на очередном собрании Электрохимического общества, прошедшем недавно в Чикаго. Новые электроды обещают удвоить емкость и значительно снизить стоимость литий-ионных аккумуляторов для всех мобильных устройств от сотового телефона до электромобиля.

Для достижения этого эффекта достаточно поменять положительный электрод на новую нанокристаллическую многослойную композитную структуру на основе соединений лития и оксида марганца. Емкость новых аккумуляторов должна достичь двухсот пятидесяти и даже трехсот миллиампер-часов на грамм. Это более чем вдвое больше, нежели у лучших сегодняшних аналогов. Кроме того, марганцевые электроды значительно дешевле, чем ныне используемые, на основе кобальта и никеля.

Хотя авторы и предложили некую теорию, объясняющую работу новых электродов, пока многое не очень понятно. Марганцево-литиевые аккумуляторы даже назвали аномально емкими и стабильными, поскольку электроды с марганцем должны, по идее, очень быстро разрушаться. Авторы полагают, что заряды в новых аккумуляторах переносятся не только ионами лития, но и благодаря реакциям, в которых участвует сам оксид марганца. А небывалую стабильность электродам придает их наноструктура.

К сожалению, пока стабильность новых аккумуляторов хоть и аномально высока, но еще недостаточна для их практического использования. Емкость падает на 16 процентов уже после десяти циклов перезарядки. Кроме того, в процессе разрядки выделяется кислород, который надо как-то безопасно удалять. ГА

Порядок должон быть

Первый полимерный квазикристалл удалось синтезировать японским химикам из университетов Нагои и Киото. Система из трех полимеров образует апериодическое покрытие плоскости с симметрией двенадцатого порядка и на новых масштабах подтверждает универсальную природу удивительной структуры квазикристаллов.

Формально квазикристаллы определяются как апериодические структуры, в которых, тем не менее, можно наблюдать дифракцию. В квазикристаллах отсутствует трансляционная симметрия, то есть их, в отличие от кристаллов, нельзя сдвинуть так, чтобы точно совместить с собой. Тем не менее, в них есть так называемый дальний порядок, и их можно совместить с собой, повернув на подходящий угол.

Сначала, в шестидесятые-семидесятые годы прошлого века, квазикристаллы открыли математики, и долгое время их воспринимали только как забавные головоломки. И лишь в 1982 году был впервые обнаружен сплав алюминия и марганца со структурой квазикристалла. Позже симметрии квазикристаллов были найдены в халькогенидных стеклах и жидких кристаллах. В 2004 году была синтезирована органическая смесь, которая образует квазикристалл при растворении в жидкости. И вот теперь квазикристалл удалось получить из полимерных цепочек. Для этого была выбрана трехкомпонентная система, включающая полиизопрен, полистирол и поли-2-винилпиридин.

Синтезированный химиками «двенадцатиугольный» квазикристалл с характерным размером между полимерными цепочками в 50 нанометров обладает такой же структурой, которая была ранее обнаружена в металлических сплавах (~0,5 нм), в халькогенидах (~2 нм) и жидких кристаллах (~10 нм). Это подтверждает универсальный характер подобного рода симметрий в природе. Развитая для объяснения самоорганизации атомов в металлических сплавах квантовая теория квазикристаллов уже не годится для описания поведения больших молекул полимеров. По всей видимости, считают авторы, есть некий универсальный механизм, работающий на разных масштабах, который и приводит к образованию квазикристаллов.