Выбрать главу

Еще более «страшен» Gladiator – довольно крупный (вес 3 т) и быстрый боевой робот (тактическое беспилотное наземное транспортное средство – TUGV), созданный в лабораториях Университета Карнеги-Меллона. Министерство обороны США намерено в 2009—2010 годах оснастить армию двумя сотнями этих механизмов, потенциально обладающих очень высокими боевыми характеристиками и огневой мощью. Пока роботом управляет оператор, однако в ходе испытаний планируется установить на него автономную самообучающуюся систему управления на базе нейросетевых алгоритмов.

Очень интересны планы по созданию автоматизированных систем вызова огневой поддержки сухопутных операций с кораблей и подводных лодок ВМС. Управляющий боем компьютер (или система компьютеров, установленных в боевых роботах) должен сам определять возможность вызова подкрепления при наличии поблизости военных кораблей, готовых к бою. С санкции командира огневое подкрепление вызывается автоматически, при этом также автоматически выдаются параметры целей и последовательность их поражения. Ясно, что успешность реализации этих задумок напрямую зависит от развития «безлюдных» технологий ведения войны…

Камикадзики

Вероятно, самыми маленькими боевыми роботами можно считать самонаводящиеся на цель снаряды или крупнокалиберные пули.

Управляемые гаубичные снаряды большого калибра, которыми стреляют из гладкоствольного орудия, известны уже давно, но вот в прошлом году инженеры из лаборатории адаптивных аэроструктур (Adaptive Aerostructures Laboratory – AAL) американского университета Auburn взялись за решение гораздо более трудной задачи: создать систему управления полетом быстро вращающегося снаряда, выпущенного из нарезного ствола. Программа получила название «Адаптивные боеприпасы, запускаемые из ствола» (Barrel Launched Adaptive Munition – BLAM).

Приборы системы управления и привода должны быть так малы, чтобы поместиться в малокалиберный снаряд. Функции руля, по замыслу конструкторов, должен выполнять отклоняемый на небольшой угол нос или хвостовик снаряда, – ведь на сверхзвуковой скорости отклонения даже в долю градуса будет достаточно для создания необходимого управляющего усилия.

Для отклонения наконечника было решено использовать несколько пьезокерамических стержней, расположенных практически параллельно оси снаряда. Меняя длину в зависимости от подаваемого напряжения, они двигали бы кончик снаряда. Довольно долго не удавалось найти приемлемую технологию изготовления пьезопривода, способного выдерживать колоссальные перегрузки при выстреле и центробежные усилия во время полета. Так или иначе, но проблему удалось решить. Изготовленные экспериментальные головки соответствовали боеприпасам калибра от 20 мм.

Испытания в сверхзвуковой аэродинамической трубе показали, что нос снаряда может отклоняться на угол до 0,12 градуса в каждую сторону с частотой до 198 Гц. Необходимое напряжение составило сотни вольт при потребляемой мощности всего в 0,028 Вт. Прочность элементов привода тоже подверглась проверке – они перенесли 17000 g стартовой перегрузки.