Выбрать главу

Дюжины кубит, разумеется, недостаточно для практических вычислений. Однако ученым удалось разработать и просчитать специальные тесты, которые позволяют проверить, насколько управляема и универсальна конкретная реализация квантового компьютера. Дело в том, что не каждый квантовый компьютер способен выполнять все необходимые операции, а это значит, что часть квантовых алгоритмов может быть ему недоступна.

Ошибки, возникающие при квантовых вычислениях, можно разделить на два класса. К первому принадлежат принципиально неустранимые ошибки из-за диссипативных процессов, постепенно разрушающих нежное квантовое состояние системы. Ко второму относятся ошибки, вызванные несовершенством экспериментального оборудования и алгоритмов управления компьютером. С ними можно и нужно бороться. На это и были нацелены проведенные эксперименты, находящиеся на пределе возможностей современных технологий.

Строго говоря, новый компьютер имеет не дюжину кубит, а чуть больше. Он состоит из одиннадцати кубит и одного кутрита. Классический трит в отличие от бита может принимать не два, а три значения — 0, 1 и 2. Квантовый кутрит, соответственно, как и кубит, может находиться в состоянии суперпозиции этих трех, а не двух значений. В процессе квантовых вычислений состояния всех 11 кубит и кутрита еще и «запутываются». Тем не менее со всей этой мешаниной ученые успешно справились, продемонстрировав универсальность созданного ими квантового компьютера. — Г.А.

Атомный ерш

Большого успеха практически одновременно и независимо добились две группы экспериментаторов из Института лазерной физики в Гамбурге (на фото) и Института квантовой электроники в Цюрихе. Впервые ученым удалось приготовить и наблюдать ультрахолодный газ из смеси бозонов и фермионов.

Все частицы во Вселенной делятся на бозоны и фермионы, так же как целые числа — на четные и нечетные. Если пару бозонов поменять местами, то ничего не изменится, а если то же самое проделать с фермионами, то квантовая волновая функция системы сменит знак. Среди элементарных частиц все частицы вещества — фермионы, а все частицы — переносчики фундаментальных взаимодействий, вроде фотона, — бозоны.

В одном квантовом состоянии может быть сколько угодно бозонов и только два фермиона со спинами, направленными в разные стороны. Можно считать, что благодаря этому существует так много химических элементов. Электроны являются фермионами, не могут все «упасть» на уровень с наименьшей энергией и вынуждены вращаться вокруг ядра по разным орбитам.

Пара или любое четное число фермионов образует бозон. Поэтому наблюдаются явления сверхтекучести и сверхпроводимости. В сверхпроводниках при низких температурах электроны объединяются в пары, и эти пары занимают квантовое состояние с наименьшей энергией, образуя так называемый квантовый конденсат Бозе-Эйнштейна. Именно благодаря парам электронов конденсата ток по сверхпроводнику течет без всякого сопротивления.

Из атомов-бозонов ученым впервые удалось приготовить конденсат в 1995 году, охладив их в ловушке до температуры близкой к абсолютному нулю. С тех пор атомный конденсат Бозе-Эйнштейна активно изучают, надеясь лучше понять загадки квантового поведения вещества. Конденсат из атомов-фермионов калия-40 получили лишь два года тому назад. Их тоже охладили до нескольких сотен наноградусов в оптической ловушке и объединили в пары как электроны в сверхпроводнике.

Но реальное вещество — это, как правило, смесь из бозонов и фермионов. Ученые давно мечтали получить такую смесь, чтобы исследовать их квантовое взаимодействие. Такая система стала бы прекрасной моделью реальных твердых тел и позволила бы найти ответ на многие загадки сверхпроводимости и других физических явлений.

И лишь теперь подобную смесь удалось получить. Для этого немецкие исследователи приготовили трехмерную оптическую решетку из лазерных лучей — оптический кристалл, в потенциальные ямы которого были захвачены атомы-бозоны рубидия-87 и атомы-фермионы калия-40. Их охладили до трех сотен наноградусов, а затем лазеры выключили, предоставив атомам возможность свободно взаимодействовать друг с другом. Очень похожие эксперименты были проведены и в Швейцарии. Там атомы калия, прежде чем их захватили в оптический кристалл, охлаждались благодаря контакту с уже готовым конденсатом атомов рубидия.

Две группы изучали разные аспекты поведения смеси. Немецкие ученые сосредоточились на изучении спаривания бозонов и фермионов, рассматривая фермионы как примесь, а швейцарцы наблюдали, как изменяется поведение бозонов в присутствии фермионов. Но обе группы пока лишь в самом начале пути. Их новая экспериментальная техника позволяет моделировать поведение самых разнообразных квантовых систем. Будем надеяться, что мы вскоре услышим о новых результатах этих и других научных групп, которые вскоре присоединятся к первопроходцам. — Г.А.