При квантовом подходе одну и ту же частицу можно описывать двумя разными способами: как частицу с некоторой массой и как волну с некоторой длиной. Единая частица-волна описывается не своим положением в пространстве, а волновой функцией (обычно обозначаемой как y), и ее местонахождение имеет вероятностную природу — вероятность обнаружить частицу в данной точке x в данное время t равна | ψ (x,t)|^2 .
Как же описывать движение частиц? Какие законы предсказывают эволюцию волновой функции с течением времени? В классической механике движение осуществляется по принципу наименьшего действия. Для данной механической системы можно построить функцию (называемую лагранжианом), минимизация интеграла от которой и дает предсказание поведения системы — траектории движущихся тел. В квантовой механике понятие «траектория» теряет смысл, но понятие лагранжиана сохраняется, и с его помощью можно предсказать поведение волновых функций взаимодействующих частиц.
Возникает вопрос: каким образом учитывать поля квантовой системы при построении этого самого лагранжиана? Ответ на этот вопрос дают так называемые квантовые теории поля. Множественное число не случайно: лагранжиан можно строить разными способами, дело лишь в том, какой из них лучше описывает реальность.
Вернемся к волновым функциям. При измерении вероятность найти частицу в данной точке равна квадрату модуля волновой функции. Значит, функцию можно умножить на любое комплексное число с единичным модулем (сдвинуть фазу), и ничего не изменится: вероятность нахождения частицы в каждой конкретной точке останется точно такой же. Фактически конкретный вид волновой функции нам никогда не узнать, да он нас и не интересует; зато очень интересно, какие операции можно произвести над волновой функцией так, чтобы свойства системы не изменились.
Аналогично, лагранжиан вообще лучше всего характеризовать теми преобразованиями, которые он «выдерживает», — то есть при которых свойства системы не изменяются. Например, сдвиг фазы выдерживает лагранжиан, который описывает поведение одного электрона.
Совокупность таких преобразований в математике называют группой. Группы играют фундаментальную роль в разных областях знания — это язык, на котором в современной науке формулируется понятие симметрии. Группа преобразований, которая появилась в примере с электроном, носит название калибровочной группы. В математике ее обозначают U(1), и она очень проста — обычная окружность на плоскости (совокупность всех поворотов вокруг начала координат). Аналогичные теории для сильного и слабого взаимодействия приводят к более сложным калибровочным группам SU(3) и SU(2) (последняя эквивалентна трехмерной сфере, лежащей в четырехмерном пространстве).
Чтобы добраться до квантовых теорий Янга-Миллса, осталось сделать два важных шага. Первый шаг заключается в том, чтобы требования глобальной инвариантности дополнить требованиями локальной инвариантности. В предыдущем примере на число с единичным модулем нужно было умножать всю функцию сразу. Но ничего не изменилось бы, если бы это умножение произошло не во всем пространстве, а в какой-то его части. В математике это называется переходом от групп глобальных преобразований к группам локальных преобразований.
Второй принципиальный момент заключается в том, что в теориях Янга-Миллса приходится использовать так называемые неабелевы группы преобразований. Из-за этого нарушается принцип суперпозиции: если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке. Так получается потому, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля! Из-за этого уравнения становятся нелинейными и весь арсенал математических приёмов для решения линейных уравнений к ним применить нельзя. Поиск решений и даже доказательство их существования становятся несравнимо более сложной задачей.
Янг и Миллс предложили общий вид лагранжианов, которые должны были привести к успеху. На основе теории Янга-Миллса сначала были объединены электрическая и слабая теории, а затем Мюррей Гелл-Манн (Murray Gell-Mann) построил теорию сильного взаимодействия. В этой теории, принесшей Гелл-Манну Нобелевскую премию, для объяснения наблюдаемых эффектов появились кварки — частицы с дробным электрическим зарядом, из которых состоят протоны, нейтроны и другие вовсе не элементарные частицы. Теория сильного взаимодействия получила название квантовой хромодинамики[Термин «хромодинамика» может показаться странным — какой может быть цвет (греческое chroma — цвет, краска) у элементарных частиц? Тем не менее свойства элементарных частиц порой носят неожиданные названия. Кварки, например, делятся на шесть типов, которые принято называть ароматами; ароматы отличаются квантовыми числами, среди которых не только заряд, но и странность и очарование. А цвет — это характеристика не только кварков, но и глюонов — частиц, которые, по мнению физиков, реализуют взаимодействие между кварками. У них еще и антицвет бывает, но в это мы углубляться не будем].