Выбрать главу

Следующий дефект тоже вытекает из конструкции. ЖК-дисплей – это такая специальная матрица, прозрачность ячеек которой меняется в зависимости от величины приложенного напряжения. Теоретически она должна меняться от полной, стопроцентной, до нулевой, – практически же ни той, ни другой добиться не удается. Но если неполную прозрачность удается перебить увеличением яркости лампы, то с отсутствием черноты бороться куда труднее. Победить ее в полной мере – даже теоретически – можно только путем обрезки той или иной части теневой области целиком, грубо говоря, недосветом лампы. То есть получить подлинный черный нам мешает сам принцип жидкокристаллических панелей, где «картинкообразующий» слой не светится, а только фильтрует свет лампы, стоящей за ним. И мы, чтобы добиться подлинной черноты (имея в виду, что ни один жидкий кристалл полностью не закрывается в принципе), должны либо снижать яркость подсветки (что приводит к общей вялости картинки). Кроме того, экран отражает внешний свет, и приходится применять специальные фильтры, изменяющие соотношение поглощения/отражения. Впервые подобные фильтры были применены в экранах ноутбуков (у Toshiba, например, это называется TruBrite, у Fujitsu-Siemens – Crystal View; есть еще BrightView, XBRITE, UltraSharp, Crystal Clear и др.). Порой производители делают экран зеркальным, порой – совмещают полировку с новыми лампами, а кто-то улучшает отражение, ибо матовое покрытие рассеивает внешний свет, за счет чего экран кажется менее черным. Решения эти, понятное дело, паллиативные: в случае полировки наружного слоя добавочный блеск не способствует, например, идеальному просмотру, ибо кроме содержимого экрана вы видите на нем и собственное отражение, – однако завоевывают покупателей, каждый из которых решает, что для него меньшее зло: блеск или некоторая тусклость. И тут особенно очевидным становится преимущество кинескопа…

Наверное, никакие ухищрения не помогут производителям ЖК-панелей полностью избавиться от недостаточной черноты черного, – и тут единственная надежда перфекционистов на очень медленно пробивающие себе дорогу OLED-дисплеи (Organic Light Emitting Diode), ячейки которых светятся при подаче напряжения и, следовательно, не нуждаются ни в каких подсвечивающих лампах. Пока присутствующие на рынке OLED-дисплеи слишком малы, они не могут похвастать глубиной цвета и применяются в основном в крохотных плеерах, в качестве внешних экранчиков мобильных телефонов или как видоискатели в карманных видеокамерах. Впрочем, то с одного конца мира, то с другого (по преимуществу, правда, с юго-восточного) приходят новости то о семнадцатидюймовом OLED-дисплее, то чуть ли не о тридцатидвух… Но в качестве телевизионных экранов – факт! – они пока не появились и, что называется, неизвестно… Специалисты говорят, что технологических преград для создания больших OLED-дисплеев нет, а есть только коммерческие: слишком, мол, дорого, – так что ближайшие годы нам придется все-таки жить с ЖК (которые, к слову заметить, тоже поначалу, и довольно долго, были несовершенны и дороги).

Следующий недостаток ЖК-телевизоров – сложность достижения на ЖК-панелях достаточной глубины цвета. Считается, что восьмибитный (двадцатичетырехбитный, – если суммарно, по трем составляющим) цвет, дающий больше шестнадцати миллионов цветовых оттенков, избыточен для любого нормального человека. Когда мы имеем дело с цветом семи– или шестибитным, картинки на первый взгляд кажутся вполне полноцветными, однако на любой градиентной заливке, да просто на цвето-яркостном переходе (особенно это заметно в светлой части изображений), заметными становятся границы полутонов, которые меня, например, раздражают безмерно. (Я не видел ни одной "плазмы", где этот дефект был бы преодолен.) Восьмибитный цвет применительно к ЖК-технологии означает, что каждый кристалл, в зависимости от подаваемого на него напряжения, должен дать как минимум два в восьмой степени (256) фиксированных состояний прозрачности, причем шкала непрозрачности должна быть равномерной.