Оказалось, что поведение облаков ртути в звездной атмосфере внешне очень похоже на поведение обычных водяных облаков в воздушной оболочке нашей планеты. Однако механизмы их формирования совершено различны. Ртутные облака существуют благодаря тонкому балансу между силами гравитационного притяжения звезды и давлением ее излучения, которое стремится вытолкнуть пары ртути и поднять облака повыше. Этот баланс неустойчив, и локальная гравитационная флуктуация на величину порядка процента способна в сотни раз изменить концентрацию паров ртути.
И хотя в поведении звездных облаков еще много неясного, ученые полагают, что главной движущей силой звездной погоды является гравитация. Тем более что Альферац – это двойная система, и вторая звезда может сильно влиять на погоду. По-видимому, похожие "металлические облака" имеются у многих молодых звезд. Ученые уже обнаружили несколько светил с облаками из стронция, иттрия и даже платины. Их дальнейшее изучение поможет лучше понять эволюцию звезд и процессы, ответственные за формирование погоды в нашей собственной атмосфере и в атмосферах соседних планет-гигантов. ГА
Необходимость в накопителях все большего объема сегодня объяснять не требуется. Именно эта необходимость привела к переходу от технологии продольной магнитной записи, в которой векторы намагниченности доменов лежат в плоскости пластины жесткого диска, к технологии перпендикулярной записи, где эти векторы расположены под прямым углом к поверхности. Последняя разработка позволяет расположить домены ближе друг к другу и тем самым повысить плотность записи. Уменьшать размер доменов можно лишь до определенного предела, дальше которого внешние возмущения не позволят надежно хранить информацию. Существуют прогнозы, что современные технологии записи на жесткие диски исчерпают себя примерно к 2010 году, и тогда придется внедрять что-то новое. Тут-то и может пригодиться разработка американских химиков из Университета Брауна, предложивших простой метод синтеза железо-платиновых нановолокон, который позволяет строго контролировать их размер и состав. Такие нановолокна могут быть собраны в магнитные наночастицы, каждая из которых способна хранить один бит информации, и послужить основой новых магнитных носителей с высокой плотностью записи. Метод позволяет получать из раствора нановолокна длиной 20–200 нм и может использоваться для других комбинаций металлов – например, кобальта и платины.
Идея использования магнитных наночастиц в качестве носителей информации не нова. Несмотря на кажущиеся радужными перспективы, на этом пути есть ряд серьезных препятствий. Чтобы значительно увеличить плотность записи, придется располагать частицы очень близко друг к другу. А здесь возникают трудности не только технологического, но и принципиального характера. Для стабильного хранения информации наночастицы должны устойчиво сохранять пространственную ориентацию своего вектора намагниченности. Влияние внешних возмущений (например, магнитного поля соседних частиц) может отклонять частицу от нужного положения, приводя к ошибкам в данных. По мнению американских исследователей, эти проблемы поддаются решению путем эффективного использования формы наночастиц. Нановолокна хороши тем, что, собирая их в пучки, можно получить очень вытянутые агрегаты, в которых магнитное поле строго ориентировано в двух направлениях – от одного полюса к другому – и не оказывает сильного влияния на соседние частицы. К тому же «перевернуть» вытянутые магниты, расположенные близко друг к другу, не так просто, как сферические домены.
К сожалению, до жестких дисков, построенных на подобной основе, еще далеко. Впрочем, магнитные нановолокна могут найти применение и в более «приземленных» приложениях – например, двигателях и генераторах. Кроме того, сплав платины и железа хорошо совместим с живыми тканями, поэтому новые волокна вполне может «приютить» медико-биологическая отрасль. ЕГ
Круговорот воды в природе – это сила, способная влиять на климат в глобальном масштабе. Важность как можно более точного предсказания климатических изменений очевидна. Недаром на решение этих задач брошены мощности самых производительных суперкомпьютеров. Однако помощь в решении этой проблемы может прийти и со стороны фундаментальных исследований строения вещества.