Выбрать главу

Но теперь ученым, наконец, удалось поставить очень тонкие и трудоемкие эксперименты и надежно установить существование акустических плазмонов. Для этого была изготовлена высокоточная электронная пушка, которая в глубоком вакууме обстреливала медленными электронами поверхность идеального кристалла бериллия. Когда эти электроны, словно камешки, отскакивали от поверхности озера свободных электронов металла, некоторые из них теряли как раз то количество энергии, которое необходимо, как предсказывает теория, для возбуждения поверхностного акустического плазмона.

Согласно расчетам, такой акустический плазмон живет лишь несколько фемтосекунд и за это время успевает пробежать по поверхности считанные нанометры. Однако этого достаточно, чтобы сильно повлиять на протекание многих химических реакций. Пока не доказан, но вполне возможен вклад этих возбуждений в механизм высокотемпературной сверхпроводимости, которая, как известно, возникает в керамиках сложного состава со слоистой структурой. Возможно, поверхностные акустические плазмоны удастся возбуждать оптическими методами за счет дифракции света на специально созданных поверхностных наноструктурах. Тогда их можно будет использовать в фотонике.

Поверхностные акустические плазмоны должны возбуждаться на многих металлах. Сейчас даже трудно представить, какие практические применения могут найти эти волны. Во всяком случае, надежное экспериментальное доказательство их существования развязывает руки теоретикам, чьи предложения теперь ограничены лишь пределами собственной фантазии. ГА

Мятая бесконечность

В 1858 году Август Мебиус представил Французской Академии наук трехмерную поверхность, имеющую только одну "сторону", известную ныне как лист Мебиуса. Двигаясь по листу Мебиуса, можно обойти всю поверхность, не пересекая ее краев. Лист Мебиуса, являющийся одним из символов бесконечности, можно получить, просто склеив два конца бумажной полоски и предварительно развернув один конец на 180 градусов по отношению к другому. Очевидно, что чем длиннее полоска, тем легче совместить ее концы подобным образом. Однако, увеличивая ширину листа при неизменной длине, мы столкнемся с пределом ширины, преодолев который, соединить концы листа, не смяв его, невозможно. Вычислить этот предел исходя из параметров "бумажной полоски" до сих пор не удавалось. Несмотря на кажущуюся простоту – это одна из нерешенных проблем.

Первые работы, посвященные возможностям математического анализа формы листа Мебиуса, появились еще в 1930-х годах, но орешек оказался слишком твердым. Лишь сейчас, после стольких лет, задача, похоже, решена. Евгений Старостин и Герт Ван дер Хейден (Gert van der Heijden) из Лондонского университетского колледжа опубликовали работу, позволяющую предсказывать форму листа Мебиуса на основании данных о поверхности, его формирующей. Ученые установили, что форма листа Мебиуса может быть предсказана с помощью дифференциальных уравнений, известных уже двадцать лет, причем эти уравнения могут описывать форму любой эластичной полосчатой поверхности. Как полагают английские математики, их открытие выходит далеко за пределы "чистой математики". С помощью уравнений Старостина – Ван дер Хейдена можно моделировать изгибание и смятие любой сложности, например, предсказать форму смятого листа бумаги, ткани или металлической обшивки, что может пригодиться в механике для "физически корректного" теоретического изучения процессов деформации. Новые уравнения могут быть использованы при создании различных спецэффектов и, возможно, войдут в состав "физических движков" компьютерных игр следующих поколений. ЕГ

Посеешь камни, пожнешь жизнь

Около тридцати лет назад английский биохимик Грэхем Кэйрнс-Смит (Graham Cairns-Smith) из университета Глазго выдвинул довольно оригинальную гипотезу о возникновении наследственного механизма жизни на Земле. По его мнению, такое явление как передача свойств от "поколения к поколению" появилось задолго до возникновения органической живой материи. И первыми обладателями этого фундаментального свойства жизни были кристаллы.

Как известно, в любом реальном кристалле содержится большое количество дефектов, представляющих собой локальные нарушения в пространственном расположении атомов или молекул кристаллической решетки. В соответствии с теорией Кэйрнса-Смита, именно расположение дефектов в кристалле и представляло собой первую "генетическую информацию", а сама гипотеза получила название "кристаллы как гены" (crystals as genes). Дефекты могут быть различных типов: точечные, линейные, плоскостные. Наиболее приспособленными для передачи следующему "поколению" кристаллов являются линейные дислокации, которые представляют собой изменения в порядке расположения целого ряда атомов решетки и словно иглы пронизывают массив кристалла. Если исходный ("материнский") кристалл, пронизанный линейными дефектами, раздробить на несколько меньших кристаллов ("зародышей") в направлении, перпендикулярном направлению дефектов, то "дочерние" кристаллы, выросшие на этих зародышах, "унаследуют" распределение линейных дефектов, как у материнского кристалла. В ходе роста в дочерних кристаллах появляются дополнительные дефекты, не связанные с "родителем" – "мутации". Некоторые "мутации" благоприятны, так как способствуют более быстрому росту "дочернего" кристалла, другие же – наоборот. Таким образом, Кэйрнс-Смит выстроил целое подобие эволюционной теории для царства кристаллов, очертив возможный механизм передачи информации в "предбиологическом" мире. Распределение линейных дефектов в кристалле можно сравнить с компьютерной перфокартой, где информация также представлена в виде пространственного расположения отверстий.

За прошедшее время гипотеза Кэйрнса-Смита неоднократно подвергалась разносторонней критике как надуманная и экспериментально необоснованная. Но недавнее исследование добавило аргументов и на другую чашу весов.

Группа американских ученых из Вашингтонского университета под руководством Барта Кара (Bart Kahr) разработала методику экспериментальной проверки гипотезы Кэйрнса-Смита. Вначале дефекты в "материнском" кристалле гидрофталата калия заполняются флуоресцентным веществом. Затем с помощью электронного микроскопа строится карта распределения дефектов "мамы". После этого "родитель" нарезается на "зародыши", которые помещаются в раствор, и на них вырастают "дети". Аналогично строятся карты дефектов "детей".

Сравнение карт дефектов разных поколений кристаллов показало, что наследование дефектов действительно происходит, и гипотеза Кэйрнса-Смита физически обоснована. Однако, по мере "смены поколений" кристаллов происходит очень быстрое нарастание количества "мутаций", и передача наследственной информации неустойчива.

Впрочем, даже если допустить справедливость гипотезы Кэйрнса-Смита, то пока не совсем понятно, что заставляло "родительские" кристаллы распадаться на "зародыши" в массовом порядке, достаточном для интенсивного "естественного" отбора. И самое главное – совершенно непонятно, как произошел переход от "кристаллической жизни" к биологической, от дефектного механизма наследования к механизму на основе нуклеиновых кислот. Но сама красивая идея, как оказалось, вполне работоспособна. ЕГ

Тепловой транзистор

Физики из Технологического университета Хельсинки вместе с итальянскими коллегами изготовили первый "тепловой транзистор". В новом устройстве, предназначенном для охлаждения электроники, потоком тепла между двумя электродами можно управлять, меняя напряжение на третьем электроде, точно так же, как в обычном транзисторе управляют электрическим током.

Близкая аналогия теплового транзистора с обычным транзистором совсем не случайна. Дело в том, что тепло в нем переносят, в основном, электроны и, управляя движением электронов, нетрудно управлять потоком тепла. Первые публикации о новом холодильнике появились еще в начале года. Он состоит из нескольких миниатюрных сверхпроводящих электродов (обозначенных буквами S на фото), отделенных изолятором от металлического электрода (N), с другой стороны от которого расположен третий управляющий электрод. Геометрия и материал электродов подобраны так, чтобы электроны между металлом и сверхпроводником туннелировали строго по одному. Это достигается за счет так называемой кулоновской блокады – естественного отталкивания между отрицательно заряженными электронами, которые мешают друг другу одновременно втиснуться в узкий сверхпроводящий электрод. Благодаря кулоновской блокаде только самым быстрым, то есть горячим электронам удается перескочить из металла в сверхпроводник, что и приводит к охлаждению металла.