Компактный оптический буфер для кремниевых чипов удалось разработать инженерам в Уотсоновском исследовательском центре корпорации IBM. Буфер изготавливается по обычной CMOS-технологии и делает ещё один важный шаг на пути к интеграции оптических линий передачи данных в современные чипы.
Как известно, эффективная передача информации внутри чипов и между ними сегодня является одним из основных узких мест на пути дальнейшего роста производительности компьютеров. Над решением этой проблемы — заменой электрических шин передачи данных оптическими — напряжённо работают не только в IBM. Многое уже сделано — эффективные оптические волноводы, модуляторы сигнала и другие устройства большого телекоммуникационного хозяйства, которое нужно теперь разместить на невеликой площади чипа.
Одно из совершенно необходимых устройств — буфер для накопления данных перед пересылкой. Его роль может выполнять оптическая линия задержки, которую, как правило, изготавливают из обычного оптического волокна нужной длины. Но длинное волокно невозможно засунуть в чип. Чтобы обойти эту трудность, в IBM использовали последовательность кольцевых кремниевых волноводов диаметром всего 55 мкм. Проходя по кругу много раз, свет получает заметную задержку, а располагая последовательно до сотни таких колец, можно обеспечить необходимые параметры буферизации. Экспериментальное устройство с площадью менее одной десятой миллиметра уже способно запоминать до 10 бит оптической информации при скорости передачи данных до 20 гигабит в секунду.
Подобные кольцевые резонаторы и кремниевые волноводы учёные использовали и раньше, но только в IBM настолько усовершенствовали технологию, что сумели использовать до сотни таких колец с приемлемым уровнем оптических потерь и ошибок. Впрочем, авторы считают, что надо продолжать работу над улучшением параметров кремниевых оптических буферов и это только первая успешная демонстрация практической реализуемости концепции. Результаты работы опубликованы в первом номере нового журнала Nature Photonics, само появление которого свидетельствует о бурном росте этого направления компьютерных технологий. ГА
Физикам из Бостонского колледжа в Чеснот Хилле, штат Массачусетс, впервые удалось изготовить коаксиальный кабель для передачи видимого света. Эта технология способна произвести революцию во многих областях — от микроскопии и солнечной энергетики до телекоммуникаций и оптических компонент компьютеров.
Обычные коаксиальные кабели, которыми, например, телевизор подключают к антенне, обладают массой замечательных свойств. Они состоят из центрального проводника в изолирующем пластике, поверх которого идёт второй цилиндрический проводник из плотной медной сетки или алюминиевой фольги с сеткой. Благодаря соосности двух проводников в таких кабелях почти нет потерь на излучение, а сигнал надёжно защищён от внешних помех.
В коаксиальных кабелях электромагнитное поле распространяется по диэлектрику между проводниками. Причём длина волны поля может быть много больше диаметра кабеля. Метровый телесигнал легко «помещается» в кабель диаметром несколько миллиметров. Этим свойством коаксиалов и решили воспользоваться учёные. В качестве центрального проводника учёные применили углеродную нанотрубку, которую покрыли прозрачным диэлектриком — оксидом алюминия, а вокруг него расположили проводящий слой хрома. Расстояние между внутренним и внешним проводником кабеля всего 100 нм, а общий диаметр такого кабеля менее 300 нм. Но работает он в диапазоне длин волн света 380—750 нм!
Новый коаксиальный кабель не будет конкурировать с обычными оптическими волокнами. Их диаметр при передаче информации на большие расстояния не так уж и важен, а затухание сигнала пока вне конкуренции. В экспериментах длина оптического нанокабеля достигала полусотни микрон. Это не так и много, но уже достаточно, чтобы передавать информацию внутри чипа и решить массу других технологических проблем. Главное преимущество нового кабеля в том, что свет удаётся загнать в канал, диаметр которого заметно меньше длины волны.
Авторы надеются, что если слой диэлектрика заменить полупроводником, то можно будет создать эффективные солнечные элементы. А прикладывая к электродам кабеля напряжение, светом можно управлять, как в оптическом переключателе или модуляторе. И пока ещё трудно себе вообразить все возможные применения нанокабеля, способного обойти ограничения привычной оптики. ГА
Три слоя оптического коаксиального кабелЯ: углеродная нанотрубка, оксид алюминия, хром
Ежегодно в первых числах января в Сан-Франциско проходит Macworld Conference & Expo — крупнейшая в мире выставка, посвящённая продукции компании Apple и заточенным под неё решениям других фирм.