В диапазоне от $700 до $1200 модели более разнообразны. Если во время съемки вам не хочется ни о чем думать, возьмите видеокамеры Sony — у них довольно прилично работает автомат. Наилучшие ручные регулировки — у фирмы Panasonic. Ее 3 CCD-камеры в этой ценовой нише также дают вполне приемлемую цветопередачу. Дорогие камеры Canon, когда-то ходившие в лидерах, сейчас не имеют ярко выраженных преимуществ перед конкурентами. Модели с 1 CCD по стоимости близки к 3 CCD-моделям от Sony и Panasonic (MVX3i, например, — около $1150), но чуть уступают им по качеству съемки, поскольку камера с 1 CCD при прочих равных условиях всегда проиграет по цветопередаче камере с 3 CCD. В группе до $1200 нет большого смысла покупать видеокамеру дороже $900. Разумнее добавить $200—250 и приобрести Panasonic GS400GC — камера покупается не на один день и даже год, а разница в качестве заметна. По сути, эта модель сейчас лидер рынка среди компактных цифровых видеокамер, и ее можно сравнивать лишь с Sony DCR-HC1000E, но «тысячная» дороже, а снимает не лучше.
Если же вы все-таки рискнете самостоятельно выяснять, какая камера лучше снимает, то самая подробная страница в Рунете на эту тему здесь. Но будьте осторожны — выбирать камеру с помощью тестов можно до бесконечности, поскольку идеала нет и не будет никогда.
Наука: Проблемы 2000 года: уравнения Навье-Cтокса
Как движется вода под действием силы тяжести? Как она обтекает попадающиеся ей на пути препятствия? Как устроены воздушные потоки вокруг самолета? Ответы на эти вопросы в общем виде физикам неизвестны, и упираются эти ответы в решение уравнений Навье-Стокса, о которых и пойдет рассказ.
«Проблема на миллион», о которой мы поговорим сегодня, имеет достаточно простую, но не слишком привлекательную математическую формулировку: задача существования, гладкости и единственности некоторой системы дифференциальных уравнений… бррр, это вам не числа от одного до бесконечности складывать[Впрочем, это дело вкуса. Свой вкус никому навязывать не хочу, но интуиция подсказывает, что среди читателей «Компьютерры» любителей дискретной математики должно быть больше, чем любителей матфизики]. Зато ее физический смысл более чем прозрачен, а применения обширны и очевидны.
Итак, откуда же есть пошли уравнения Навье-Стокса? Они описывают поведение жидкостей и газов. Да-да, оказывается, физики, создающие теории двадцати-с-лишним-мерного пространства суперструн, решающие загадки черных дыр и полным ходом движущиеся к построению квантового компьютера, до сих пор не могут описать поведение самой обычной воды. Все уравнения вполне естественны и, по большому счету, очевидны из общепринятой физической модели несжимаемой жидкости. Первое из уравнений — это второй закон Ньютона, F=ma. Правда, в F, кроме внешней силы f=(f(i), i=1...n) (общая постановка задачи формулируется в n-мерном пространстве, но интересный случай, конечно, тот, в котором n равно трем[Вспоминается известный анекдот про математика, который шел по улице и заметил вывеску: «Камерный оркестр». «Интересно…» — подумал математик и зашел. Через минуту вышел разочарованный: «Тривиальный случай… ка равно трем». В нашей задаче ка, равное трем, — отнюдь не тривиальный случай]), должны войти также силы, отвечающие за давление p и трение внутри жидкости. Итого получается:
где u(x,t)=ui(x,t)— неизвестный вектор скорости, x — n-мерный вектор координат, t — время, а n — коэффициент вязкости. Второе уравнение говорит, что жидкость несжимаема. На математическом языке это выглядит так:
div u = 0.
Кроме того, разумеется, уравнения должны быть снабжены начальными условиями, причем, чтобы оставаться в рамках разумных физических моделей, как начальный вектор, так и сила f (точнее, их производные) должны достаточно быстро уменьшаться по мере удаления от нуля координат к бесконечности, а вся система должна иметь ограниченную энергию:
Свои имена уравнениям дали французский инженер Клод-Луи Навье (Claude-Louis Navier), выдающийся мостостроитель, разработавший первую в мире теорию подвесных мостов, и Джордж Габриэль Стокс (George Gabriel Stokes), научные заслуги которого в основном относятся к математической физике и дифференциальной геометрии. Кстати, Стокс дал имя британской единице вязкости.
Неудивительно, что эти уравнения долгое время привлекали внимание математиков всего мира. И здесь есть серьезные причины для гордости за отечественную науку: весомый вклад в развитие теории уравнений Навье-Стокса внесла Ольга Александровна Ладыженская, одна из замечательных представителей петербургской математической школы. Главным результатом Ладыженской в этой области было полное решение проблемы в двумерном случае: Ольга Александровна доказала однозначную разрешимость задачи. В трехмерном случае она получила частичные результаты: доказала однозначную разрешимость уравнений на конечном промежутке времени, а также решила общую задачу в предположении малости так называемого числа Рейнольдса (этот параметр задает соотношение между инерцией и вязкостью; при больших значениях числа Рейнольдса поток становится турбулентным). А вот вопрос о единственности так называемого слабого решения Хопфа, которое существует для бесконечного промежутка, до сих пор остается открытым — и за ответ на него решение Clay Mathematical Institute готов заплатить миллион долларов.