Выбрать главу

Снимки, сделанные камерой, сначала обрабатываются алгоритмами первичной обработки. Компания рассказывает о них скупо, но известно, что, например, автоматически отбрасываются кадры, на которых нет человеческих лиц, а на тех, что есть, сами лица эффективно выделяются из окружающего их «шума». Слово «эффективно» значит, что эта фильтрация идет почти со скоростью съемки — десятки снимков в секунду. Это впечатляющее и важное достижение — выделение из видеопотока лица, подсвеченного световым шаблоном, прямо влияет на весь процесс опознания. Традиционные системы, работающие с плоскими снимками, проводят такое выделение с большим трудом, поскольку вынуждены работать, по сути, с комбинацией темных и светлых пятен — именно так машина «видит» обычную фотографию.

Новые горизонты

Рынок лицевой идентификации в США (тогда еще 2D) был занят несколькими известными компаниями, которые после терактов провели активную PR-компанию своих продуктов. Их акции пошли вверх, и даже были заключены крупные контракты, но затем Пентагон провел независимые испытания, которые все системы провалили. Например, известная Visionix дала 52,5% ошибок типа «не признал» на базе всего из пятнадцати человек-добровольцев (503 неудачных попытки на 958 распознаваний), а на полевых испытаниях в аэропорту Палм-Бич ошибки типа «обозналась» составили 31,3% от общего числа тревог (1081 ложная тревога из 3455).

В результате, когда A4Vision смогла сделать альфа-версию своего «опознавателя», сама идея face recognition была глубоко дискредитирована, и неизвестному стартапу пришлось доказывать, мол, «ваши старые большие компании ничего не умеют, а наша молодая и маленькая умеет гораздо больше их».

На сегодняшний день главный продукт A4Vision — набор алгоритмов и технических устройств, которые крупные интеграторы систем безопасности могут встраивать в свои приложения. Крупному банку такая система может обойтись даже дешевле стандартных смарт-карт при несравнимо большей надежности.

Меж тем своей главной целью компания видит национальные паспортные системы — самые глобальные и денежные из всех проектов идентификации. Участвовать в них самостоятельно бесполезно (слишком сильны местные лоббисты и соображения национальной безопасности), поэтому основной стратегией является наведение контактов с крупнейшими локальными интеграторами. Дела идут успешно, и вот уже алгоритмами A4Vision американцев будет опознавать Motorola, у нас — НПО «Информация», а кроме них в списке партнеров значатся Unisys, Bell, GE, Oracle, Siemens, Sagem, Samsung и прочая и прочая. А ИФ «Мехатрон» уже установил пробный аппарат на одном из контрольно-пропускных пунктов «Салаватнефтеоргсинтеза», планируя до конца года оснастить ими все проходные предприятия (www.metron.ru/ content/view/39/).

Далее на основе снимков создается предварительная 3D-модель лица, от которой отрезается все постороннее — прическа, усы, борода, шея… В получившейся модели заполняются возможные «дыры» и проводится сглаживание. Кстати, система легко «видит» очки на лице (как выступ перед глазами) и в зависимости от настроек может попросить их снять или, вырезав из модели этот участок, попытаться обработать то, что осталось.

В конечном счете модуль первичной обработки выдает оптимизированную трехмерную поверхность, оптимально подходящую для последующего распознавания.

После первичной обработки наступает черед «извлечения антропометрических особенностей лица». Разумеется, извлекаются не все особенности, а только индивидуальные и не меняющиеся из-за болезней, диет, пластических операций и т. д.

Кстати

Любопытно, что среди законодателей глобальных технологических изменений на Западе немало предпринимателей российского происхождения — Макс Левчин (основатель PayPal) и Сергей Брин (основатель Google), Алек Милославский (основатель Genesys) и Александр Степанов из Adobe…

По словам представителей компании, независимые испытания показали, что точность лицевой 3D-идентификации по ряду параметров превосходит точность идентификации по отпечатку пальца, который подделать несравнимо легче, чем лицо. Конечно, если сравнивать с идентификацией всех пяти пальцев, пока не превзойденной никакими другими системами (кроме ДНК), включая сканер радужки глаза, то возможности системы все же имеют ограничения по размеру базы. Поэтому, по данным НПО «Информация» (www.npo-inform.com), лучше применять комбинированный метод с использованием трехмерной технологии от компании A4Vision и двухмерной системы распознавания, обеспечивающей достаточную точность в режиме идентификации при базах данных размером до 10 000 лиц, а в перспективе — до 100 000 человек...".

Чтобы понять, как это возможно, снова сделаем отступление. Был такой ученый — Герасимов Михаил Михайлович (1907—70), российский антрополог, археолог и скульптор, доктор исторических наук. В историю он вошел, главным образом, как создатель метода восстановления облика людей по костным останкам. Наибольшую известность получило восстановление лиц по найденным черепам — читатели наверняка видели такие ролики по ТВ. Герасимов доказал, что форма отдельных частей лица (носа, рта, глаз и ушей) очень жестко зависит от величины и формы частей черепа — носовых костей, строения и ширины зубной дуги, формы и величины зубов, прикуса, особенностей нижней челюсти, формы глазниц, их глубины и т. д. Он создал метод, так и называемый «метод Герасимова», по которому археолог, нашедший череп, может весьма точно воссоздать лицо его обладателя. Если добавить к этому лицу вероятную прическу и «раскрыть глаза» (рукой художника), то получится почти прижизненный портрет.