Выбрать главу

Вытравливая в кристалле полоски кремния особого вида, можно добиться того, чтобы они играли роль световодов, передающих свет от одного участка кристалла к другому. Разместив над световодом специальный конденсатор и изменяя на нем напряжение так, чтобы в канале под ним создавалась особого рода «накачанная» среда, можно организовать крошечную управляемую задержку в передаче («вращать» по желанию его фазу). Разделяя оптический сигнал на два одинаковых канала, вращая фазу в одном и снова складывая сигналы, можно добиться того, чтобы в «обычном» состоянии сигналы складывались «в фазе», усиливая друг друга, а во «включенном» — в противофазе, ослабляя, и таким образом эффективно и очень быстро модулировать электрическим током оптический сигнал, передавая данные. С приемом данных — преобразованием модулированного света обратно в электрический ток — особых проблем не возникает, соответствующие решения известны и применяются уже давно. И чтобы все это заработало, не хватало лишь одного — «источника питания», который дал бы тот самый изначальный свет, который можно промодулировать, передать по световоду и детектировать в приемнике. Вплоть до недавних пор единственным способом обойти это ограничение было использование внешнего лазера, «освещавшего» снаружи кремниевый чип, а это дорого, сложно и малоэффективно. В прошлом году собственно лазер (как рабочее тело и оптический резонатор) удалось перенести на кристалл — хотя для его работы ему по-прежнему требовалась внешняя накачка светом. И вы уже, наверное, догадались, к чему я клоню, — на Форуме Intel объявила о последнем, решающем достижении в этой области, сумев интегрировать на тот же кристалл помимо лазера и источник накачки на основе фосфида индия. Так что теперь корпорация располагает всеми необходимыми технологиями для промышленного производства «обыкновенных», не требующих никаких специальных условий, кроме электропитания, полупроводниковых кристаллов, работающих с модулированным инфракрасным светом.

Правда, источник и приемник света пока довольно велики, поэтому использовать их для внутрипроцессорной связи не планируется — зато на их основе легко сооружается приемопередатчик из 25 лазеров с разной длиной волны и соответствующих им детекторов излучения, позволяющих при модулировании света каждого лазера с частотой 40 ГГц (два года назад Intel показывала модуляторы на 1 ГГц, а год назад — на 10), достичь пропускной способности (без коррекции ошибок) в 1 Тбит/с. При этом размеры приемопередатчика достаточно малы, чтобы сделать его частью будущего процессора Intel и использовать, скажем, для передачи данных между процессорами или между процессором и оперативной памятью, с быстродействием на порядок выше, чем в существующих системах, и на порядок большей же простотой подключения (два оптических канала вместо сотен медных и алюминиевых проводников). К сожалению, ничего похожего на Форуме не показали — представленный образец из четырех лазеров на одном кристалле только равномерно излучал свет. Но в отличие от многих других исследовательских проектов, появление соответствующих решений от Intel — дело ближайшего времени.

Самые важные вычислениuя

То, что в Intel окрестили Essential Computing, поставило меня в тупик с адекватным переводом. Отчасти Essential — это что-то составляющее неотъемлемую часть, и тут все более или менее понятно: например, клэйтроника, если она когда-нибудь войдет в нашу жизнь, действительно станет «неотъемлемой» вычислительной дисциплиной. Но вдобавок Essential еще и самое-самое важное, ценное, значимое, — и в соседи к клэйтронике попадает… программное обеспечение из сферы здравоохранения. Вечная мечта человечества — и забота об отдельных людях: ради столь благих целей никаких петафлопсов не жалко. С позволения читателя я оставлю в покое клэйтронику и, говоря про Essential Computing, буду иметь в виду только «здравоохранительную», а еще точнее — «домашне-здравоохранительную» часть этого многогранного понятия.