К сожалению, новый метод плохо приспособлен для массового производства наноустройств и даже в лабораторных условиях его реализовать пока не просто. Однако сама возможность подогнать диаметр нанотрубки позволит ученым решить массу экспериментальных проблем. А там и приемлемая модификация метода для массового производства, быть может, отыщется. ГА
Исследователям из Института ядерной физики Макса Планка в Гейдельберге впервые удалось проследить за квантовыми колебаниями и вращением атомов в молекуле тяжелого водорода, состоящей из пары атомов дейтерия. Атомы в этой молекуле колеблются так часто и они такие мелкие, что ни одна из существующих технологий микроскопии не позволяет за ними уследить. Поэтому ученым пришлось изобрести новый хитроумный метод, чтобы косвенно увидеть, что же в ней происходит.
Молекулу, находящуюся в основном невозбужденном квантовом состоянии, обстреляли парой лазерных импульсов длительностью 6—7 фемтосекунд, разделенных промежутком всего в 0,3 фемтосекунды. Первый импульс отрывал от молекулы электрон и превращал ее в положительно заряженный ион, одновременно заставляя вращаться. В ответ на возмущение ядра дейтерия начинали двигаться, чтобы занять новое положение равновесия. И в этот миг следующий лазерный импульс отрывал от иона второй и последний электрон, заставляя молекулу «взорваться» за счет отталкивания положительно заряженных ядер. Ядра разлетались, и по их следам можно было определить, на каком расстоянии были ядра в молекуле в момент взрыва. Ведь чем ближе друг к другу находились ядра, тем сильнее они отталкивались и тем быстрее разлетались. «Взрывая» молекулу много раз с разным промежутком между импульсами, ученым удалось восстановить квантовую картину колебаний и вращения ядер в молекуле.
Такая разрушительная «взрывная» микроскопия обладает беспрецедентным пространственным и временным разрешением. С ее помощью ученые собираются изучать более сложные молекулы, следить за протеканием химических реакций, управлять квантовыми процессами… К новой серии экспериментов с молекулой метана исследователи уже приступили. ГА
Несколько команд изобретателей продолжают гонку за призом от NASA, обещанным создателю космического лифта. Было бы здорово сообщать о прорывах на этом фронте, однако по большей части приходится принимать к сведению все новые и новые проблемы.
Нет пока материала, из которого можно было бы сделать трос нужной прочности длиною в десятки тысяч километров, нет четко продуманной схемы электропитания лифтовой кабины беспроводным способом, а ведь лифт должен поднимать в космос не только себя и быть гораздо рентабельнее, чем традиционные способы борьбы с гравитацией. Недавно всплыл новый вопрос, связанный с защитой от радиации.
Кабине лифта придется добираться до геостационарного спутника, к которому будет прикреплен внешний конец троса, минуя радиационные пояса Земли. При этом лифт не сможет преодолеть опасные слои магнитосферы нашей планеты со скоростью ракеты, движение по тросу займет десятки часов, поэтому гипотетическому пассажиру гарантирована многократная смертельная доза облучения в кабине без серьезной защиты. Андерс Йоргенсен (Anders Jorgensen) из Лос-Аламосской национальной лаборатории в журнале New Scientist рассказал о своих исследованиях в этой области и, в частности, рассмотрел возможные решения.
Трос можно прикрепить не вблизи экватора, как предполагает классическая схема, а значительно ближе к полюсу, ведь над высокими широтами толщина радиационных поясов меньше. В этом случае трос потянется не перпендикулярно поверхности Земли, а под углом, ведь внешний конец все равно будет находиться над экватором. Такой способ породит проблему устойчивости троса в атмосфере, а путь лифта значительно возрастет.
Есть и другой вариант: на определенном участке троса перед поясами разместить устройство, защищающее от радиации — своеобразный щит, который могла бы подобрать по пути кабина. Однако размещение щита сильно усложнит конструкцию всей системы и опять-таки приведет к ее неустойчивости.
Третий вариант самый простой: можно изначально защитить саму кабину либо толстыми непроницаемыми для опасных частиц стенками, либо магнитным полем. В первом случае это существенно увеличит массу лифта и энергозатраты на подъем, а во втором — сравнимая энергия будет тратиться на создание защитного поля.
В любом случае, лифтовый космический туризм пока представляется самым экстремальным способом выбраться за пределы атмосферы. И хотя пассажирская кабина должна быть оснащена всеми удобствами для путешествия в несколько дней, на особые радости рассчитывать вряд ли придется, учитывая стремление инженеров к уменьшению общей массы. Если же применительно ко всей конструкции вспомнить про связанные с лифтом понятия «застрял», «лифтер» и, не дай бог, «обрыв троса», то мероприятие такого рода представится предельно мрачным. АБ