Как развитие идей быстрого интерконнекта отметим, например, адаптеры сети InfiniBand, подключающиеся через специальный слот HTX к процессорной шине HyperTransport. Фактически адаптер напрямую подключается к процессору[Напомним, что в многопроцессорных системах на базе AMD Opteron межпроцессорное взаимодействие происходит именно по этой шине]! Лучшие образцы подобных решений обеспечивают столь высокую производительность, что построенные на их основе кластеры вплотную приближаются по характеристикам к классическим SMP-системам, а то и превосходят их. Так, в ближайшие несколько месяцев на рынке должен появиться интереснейший чип под названием Chorus, который по четырем шинам HyperTransport подключается к четырем или двум процессорам AMD Opteron, расположенным на одной с ним материнской плате, и с помощью трех линков InfiniBand может подключаться еще к трем другим «Хорусам», контролирующим другие четверки (или пары) процессоров. Один Chorus - это одна материнская плата и один сравнительно независимый узел с несколькими процессорами, подключаемый стандартными кабелями InfiniBand к остальным узлам. Внешне вроде бы получается кластер, но - только внешне: оперативная память у всех материнских плат общая. Всего в текущем варианте может объединяться до восьми «Хорусов» (и соответственно до 32 процессоров), причем все процессоры будут работать уже не как кластер, а как единая SUMA-система, сохраняя, однако, главное достоинство кластеров - невысокую стоимость и возможность наращивания мощности. Такой вот получается «суперкластеринг», стирающий границы между кластерами и SMP.
Впрочем, все эти новомодные решения совсем не дешевы, - а ведь начинали мы с невысокой себестоимости кластера. Поэтому «Хорусы» да «Инфинибенды», стоящие солидных денег (несколько тысяч долларов на каждый узел кластера, что хоть и гораздо меньше, чем у аналогичных SMP-систем, но все равно дорого), встречаются нечасто. В секторе «академических» суперкомпьютеров, принадлежащих университетам, обычно используются самые дешевые решения, так называемые Beowulf-кластеры, состоящие из набора персоналок, соединенных гигабитной или даже стомегабитной Ethеrnet-сетью и работающих под управлением бесплатных операционных систем типа Linux. Несмотря на то что собираются такие системы буквально «на коленке», иногда из них все равно вырастают сенсации: к примеру, «биг-мак» - собранный из 1100 обычных «макинтошей» самодельный кластер, обошедшийся организаторам всего в 5,2 млн. долларов и умудрившийся занять в 2003 году третье место в рейтинге Top 500.
Можно ли «продолжить» кластеры в сторону меньшей связанности точно так же, как, «продолжив» их в другом направлении, мы пришли к чипу Chorus и «почти SMP»? Можно! При этом мы отказываемся от построения специальной кластерной сети, а пытаемся использовать уже имеющиеся ресурсы - локальные сети и образующие их компьютеры. Общее название подобного рода решений - GRID-технологии, или технологии распределенных вычислений (вы наверняка с ними хорошо знакомы по таким проектам, как Distributed.Net или SETI@Home; машины добровольцев, участвующих в этих проектах, загружены разнообразными расчетами, ведущимися в то время, когда ПК хозяину не нужен). Ограничиваться достигнутым создатели GRID-систем не собираются и ставят перед собой амбициозную цель - сделать вычислительные мощности таким же доступным ресурсом, как электричество или газ в квартире. В идеале все компьютеры, подключенные к Интернету в рамках GRID, должны быть объединены в некое подобие кластера, и в то время, когда ваша машина простаивает, ее ресурсы будут доступны другим пользователям, а когда у вас возникает необходимость в больших мощностях, вам помогают «чужие» свободные компьютеры, которых в Сети предостаточно (кто-то отошел попить кофе, кто-то занимается серфингом или другими не загружающими процессор делами). Приоритетный доступ к ресурсам GRID будут иметь ученые, которые получат в распоряжение в буквальном смысле всемирный суперкомпьютер; но и обычные пользователи тоже внакладе не останутся.
Впрочем, если на словах все выглядит так замечательно, то почему это светлое будущее до сих пор не настало? Все дело в том, что при создании GRID возникают нетривиальные проблемы, решать которые пока никто толком не научился. В отличие от простого кластера при создании подобной системы приходится учитывать такие факторы, как неоднородность вычислительных узлов, низкая пропускная способность и нестабильность каналов, куда большее количество одновременно выполняемых задач, непредсказуемое поведение элементов системы, ну и, конечно, недоброжелательность некоторых пользователей. Судите сами: неоднородность нашей сети (причем очень сильная) возникает оттого, что к Интернету подключены самые разные компьютеры; у них разные возможности, разные линии связи и разные хозяева (режим работы у каждого свой). К примеру, где-то в школе есть гигабитная сеть из трех десятков почти всегда доступных, но не очень быстрых компьютеров, выключающихся на ночь в строго определенное время; а где-то стоит одинокий компьютер с завидной производительностью, непредсказуемо подключаемый к Сети по слабенькому дайлапу: так вот, в первом случае будут очень хорошо выполняться одни задачи, а во втором - совершенно другие. И для обеспечения высокой производительности системы в целом все это надо как-то анализировать и прогнозировать, чтобы оптимальным образом спланировать выполнение различных операций.
Далее. С плохими каналами связи трудно что-то сделать, но ведь можно не ждать светлого будущего, когда Интернет станет быстрым и надежным, а уже сейчас применять действенные методы сжатия и контроля целостности передаваемой информации. Вполне возможно, что резко повысившаяся за счет этого пропускная способность каналов скомпенсирует выросшую из-за необходимости сжатия и контроля вычислительную нагрузку на компьютеры сети.
К сожалению, большое количество одновременно выполняемых задач существенно увеличивает нагрузку на управляющие элементы GRID-сети и осложняет задачу эффективного планирования, поскольку уже сами «управленцы», контролирующие эту сеть, зачастую начинают требовать для себя отдельный суперкомпьютер, ссылаясь на необходимость сложного контроля и планирования. А планировать и осуществлять контроль им действительно нелегко, и не только из-за неоднородности планируемых ресурсов, но и по причине их «ненадежности». Вот, к примеру, непредсказуемое поведение хозяина компьютера - это отдельная песня. В обычном кластере выход элемента из строя - нештатная ситуация, которая влечет за собой остановку вычислений и ремонтные работы, в GRID же отказ одного элемента - нормальная ситуация (почему бы не выключить компьютер, когда вам это надо?), ее нужно корректно обработать и передать невыполненное задание на другой узел или же заранее назначать одно и то же задание нескольким узлам.
И наконец, никуда не деться в GRID-сетях от недоброжелательных пользователей (не зря же сейчас очень много делается для защиты информации). Ведь нам нужно как-то распределять и планировать во всей сети задания от всех ее пользователей, - и мало ли чего какой-нибудь Василий Пупкин мог туда запустить? Сегодня и без того вирусы, заражающие подключенные к Интернету компьютеры специальными троянами («зомбирование») и создающие целые «зомби-сети» из зараженных машин, готовых делать все, что заблагорассудится автору вируса (проводить ли распределенные DDoS-атаки или рассылать спам - неважно), представляют собой серьезнейшую угрозу, а тут - у любого человека появляется возможность посредством штатной системы рассылки распространить любой код на сотни и тысячи персоналок. И хотя эта проблема в принципе решаема (например, путем создания для выполняемых задач виртуальных машин - благо вскоре технологии аппаратной виртуализации , которые позволят это сделать без особого труда, станут штатной принадлежностью большинства новых компьютеров), то как защититься от банальной «шалости» в виде запуска бессмысленного кода (скажем, бесконечного цикла) и замусоривания им GRID-сети?
На самом деле все не так грустно, и многое в GRID-направлении уже сделано. Запущены и функционируют десятки проектов, использующих распределенные вычисления для научных и околонаучных целей; запущены и GRID-сети для «внутриуниверситетского» научного использования - в частности, CrossGrid, DataGrid и EUROGRID.