Выбрать главу

Что же, с нетерпением ожидаю запроса из Академии наук…

Наука:

Проблемы 2000 года: Гипотеза Берча-Свиннертон-Дайера

В одной из предыдущих статей раздела (посвященной гипотезе Ходжа; «КТ» #609) мы уже касались алгебраической геометрии. Тогда же упоминалось, что к ней имеют прямое отношение как минимум три из семи задач на миллион. Об одной из таких задач мы и поговорим: гипотеза Берча-Свиннертон-Дайера касается рациональных точек алгебраических многообразий - иными словами, рациональных решений полиномиальных уравнений.

Введение

Алгебраическую геометрию, как и многие другие области математики, невозможно причислить ни к древним, ни к современным разделам науки. С одной стороны, ничто не ново под луной: еще древних греков, заложивших основы самого метода математического познания, интересовали проблемы, которые и сегодня исследует алгебраическая геометрия. С другой же - о глубине современных методов и задач этой науки древние греки не могли даже догадываться (как зачастую и нынешние математики, работающие в других областях).

Ключевые задачи алгебраической геометрии сформулировать и понять совсем не трудно. Вот, например, общее направление, к которому относится и гипотеза Берча-Свиннертон-Дайера: выяснить, сколько у данного полиномиального уравнения решений в рациональных[Имеющих вид p/q, где p, q - целые. - Л.Л.-М.] числах. Но чтобы сформулировать саму гипотезу, требуется изрядная подготовка.

Немного истории

Как мы уже упоминали, общая проблема поиска рациональных решений была поставлена - и в самых простых частных случаях решена - очень давно. Одна из древнейших формулировок, встречающаяся еще в арабских трактатах X века, имеет геометрическую природу. Это так называемая задача о конгруэнтных числах: какие рациональные числа могут быть площадями прямоугольных треугольников с рациональными длинами сторон? Однажды Фибоначчи[Он же Леонардо Пизанский, итальянский ученый и одновременно купец (1170-1250). - Л.Л.-М.], находясь при дворе Фредерика II, не сходя с места нашел такой треугольник с площадью 5; есть и более экзотические примеры. Ответ таков (желающие могут его проверить): n - конгруэнтное число тогда и только тогда, когда число рациональных решений уравнения y2 = x3 - n2x бесконечно.

Первым, кто поставил проблему поиска рациональных решений в ее современном смысле, был великий французский математик Анри Пуанкаре. Пуанкаре сделал для развития математики (в том числе алгебраической геометрии) и физики очень многое. О других его достижениях у нас еще будет повод поговорить, ведь именно он сформулировал одну из «задач на миллион», в его честь и названную гипотезой Пуанкаре.

Брайан Берч (Bryan Birch) и Питер Свиннертон-Дайер (Peter Swinnerton-Dyer) (да-да, Берч-Свиннертон-Дайер - это два человека, а не три) занимались этой проблемой в начале шестидесятых. Примечательно, что у истоков гипотезы стоит один из ранних компьютеров - кембриджский EDSAC, с помощью которого Берч и Свиннертон-Дайер исследовали поведение так называемых эллиптических кривых (что это такое, поясним чуть позже).

Суть

Итак, в чем же суть проблемы, о которой мы сегодня рассказываем? Рассмотрим кривую, заданную полиномиальным уравнением с двумя переменными. Одна из важнейших характеристик такой кривой - ее род (genus). Дать здесь классическое определение рода кривой будет трудно, но мы приблизимся к нему с другой стороны. Начнем с поверхностей. Наверное, каждый в детстве читал о топологах, которые не могут отличить кружку от бублика - ведь обе поверхности топологически эквивалентны тору. Так вот, у поверхностей тоже есть род; род бублика, например, равен единице. А вообще род поверхности (если быть точным, род «ориентируемой поверхности») - это количество замкнутых кривых, по которым ее можно разрезать так, чтобы она не распалась на отдельные части. Можете сами попробовать: сферу или плоскость так разрезать нельзя, у них род 0, тор (он же бублик[]) можно разрезать один раз, хоть вдоль, хоть поперек, но после этого останется либо цилиндр, либо кусок плоскости, и второго разреза уже не получится. Все ориентируемые поверхности похожи на сферу с ручками (термин из алгебраической геометрии): сколько у сферы ручек, столько и разрезов можно сделать.