Выбрать главу

поддержка алгоритма шифрования WEP с 64/128-битным ключом

возможности назначения IP-адреса: фиксированный IP, DHCP, PPPoE

встроенный веб-конфигуратор

вес 110 г

В домашних и корпоративных беспроводных сетях P-2000W EE может стать альтернативой традиционному беспроводному телефону (особенно если услуги телефонии предоставляются по IP и беспроводная сеть уже имеется). Новинка поддерживает стандарт SIPv2 для совместной работы с абонентским IP-телефонным оборудованием других производителей и с международными операторскими сетями IP-телефонии. Для обеспечения повышенного качества обслуживания голосовые пакеты могут быть помечены специальными маркерами (TOS и DiffServ), гарантирующими приоритетную обработку и передачу пакетов в локальных IP-сетях. Телефон поддерживает наиболее распространенные используемые кодеки G.711 и G.729, его можно использовать в режиме переносной рации, в котором трубки общаются друг с другом, минуя не только SIP-серверы, но и беспроводную точку доступа и позволяя осуществлять защищенные от перехвата звонки в отсутствие сетевой и IP-телефонной инфраструктуры.

Видеокамеры Canon miniDV серии MV9ХХ

матрица 1/6 дюймов CCD, 800 тысяч пикселов

цифровой зум 1000х (MV950 и MV960), 800х (MV930 и MV900)

дисплей 16:9, 2,7 дюйма, 112 тысяч пикселов

интерфейс USB

питание BP-2L5, 530 мАч

габариты 115х92х49 мм

вес 380 г

Аппараты серии MV900 (MV960, MV950, MV930 и MV900), идущие на смену моделям серии MV800, представляют собой простые в эксплуатации полнофункциональные miniDV-видеокамеры начального уровня для бытового использования. Камеры оптимизированы для видеосъемки высокого разрешения в режиме 16:9, что дает преимущество при просмотре роликов на широкоформатных телевизорах. Все новинки имеют 25-кратный оптический зум с переменной скоростью зумирования, а также процессор обработки изображения DIGIC DV, который позволяет записывать фотографии на карту памяти одновременно с видеосъемкой. Дисплей с маркером уровня гарантирует, что объект съемки будет выровнен в кадре. Камеры также оснащены электронным стабилизатором изображения (EIS), имеют пять запрограммированных режимов автоматической экспозиции и поддерживают стандарт PictBridge.

ТЕХНОЛОГИИ: Зрение роботов

Автор: Алексей Калиниченко

Мы живем в трехмерном мире, а смотрим на него лишь двумя глазами. Наши глаза передают в мозг две картинки, из которых он формирует представление об окружающем пространстве. Роботам, обычно получающим визуальную информацию при помощи видеокамер, тоже нужно знать о трехмерной структуре мира. Но если мозг может легко понять, какие объекты на картинках, полученных от каждого из глаз, соответствуют друг другу, то компьютеру справиться с этой задачей не так просто[Эта задача называется сегментацией].

Давайте рассмотрим, как люди воспринимают трехмерный мир. Для этого мы используем как минимум три инструмента. Прежде всего, конечно, бинокулярное зрение. Поскольку наши глаза отстоят друг от друга на некоторое расстояние, то анализируя картинки, полученные с их помощью, мозг может судить о том, какие предметы находятся дальше от нас, а какие ближе. В самом деле, если мы знаем расстояние между двумя точками (глазами) и углы, под которыми видим третью, то при помощи несложных тригонометрических формул мы можем найти и расстояние от третьей точки до любого из глаз.

Следующий инструмент основан на, казалось бы, недостатке человеческого глаза — он имеет конечную глубину резкости[Расстояние между ближней и дальней границами пространства, в пределах которого объекты находятся в фокусе (на снимке получаются достаточно резко)], то есть мы не можем видеть с хорошей резкостью сразу оба предмета, если первый находится от нас на расстоянии один метр, а второй удален на десять метров. Соответственно если изображения двух предметов будут резкими, то можно сделать вывод, что они находятся на приблизительно одинаковом расстоянии от нас.

И третий, уже скорее психологический, инструмент использует тот факт, что мы обычно имеем дело с хорошо знакомыми нам предметами — например, все примерно представляют, какого размера должна быть табуретка или кровать. Поэтому для определения расстояния до таких предметов мозгу достаточно знать, какая площадь на сетчатке занята их изображением. Естественно, что все эти методы работают в комплексе, взаимно дополняя и уточняя друг друга.

Также огромную роль играет способность человека выделять объекты из того потока информации, которую он получает благодаря органам зрения. Грубо говоря, когда мы входим в незнакомую комнату, нас не интересует форма стоящего в углу кресла, нам нужно лишь знать, с какой стороны и как далеко от нас оно находится. А вот роботу, как уже было сказано, даже идентифицировать кресло на изображении комнаты не всегда под силу.