Самое поразительное, что СССР, разоренный Великой Отечественной войной, сумел выиграть первые раунды космического противостояния при подавляющем превосходстве США в ресурсах. Тем безоговорочнее был триумф, именно 4 октября 1957 года началось то, что потом выросло в настоящее Освоение Космоса.
Первый спутник земли весил 83,6 кг и имел диаметр 58 см. На его борту работали два радиопередатчика, предававшие сигналы на частотах 20,005 МГц и 40,002 МГц. Чтобы обеспечить нужный для их работы температурный режим, внутри располагался специальный вентилятор, перемешивавший сухой азот. Поверхность спутника сделали зеркальной не для красоты, а для лучшего отражения солнечного излучения. Наличие же передатчиков было принципиальным: иначе доказать успешность запуска просто невозможно. Вопреки сообщениям ТАСС того времени, первый спутник вовсе нельзя было увидеть невооруженным глазом: он был слишком мал для этого. По мнению наших конструкторов, весь мир видел не сам спутник, а огромную вторую ступень ракеты, которая некоторое время тоже вращалась вокруг планеты. АБ
Шумит - не шумитВажный алгоритм для измерения шумов, искажающих вычисления квантовых компьютеров, предложили ученые из Университета Ватерлоо (Канада) и Массачусетского технологического института. Благодаря этой работе станут возможными практические измерения шумов и сравнение различных реализаций квантовых вычислительных и коммуникационных систем.
Как известно, главный бич квантовых вычислений, пока ставящий под большое сомнение их практическую осуществимость, это декогеренция, или разрушение нежных квантовых состояний вследствие теплового шума. С этим явлением всячески борются как за счет применения алгоритмов коррекции ошибок, так и совершенствуя физические реализации квантовых компьютеров, но пока безуспешно. Мало того, сравнить различные квантовые компьютеры по уровню шума не представлялось возможным. А ведь физические механизмы и источники шумов, а также их влияние на вычисления в квантовых компьютерах на фотонах, захваченных ионах, ядерных спинах или полупроводниковых квантовых точках сильно разнятся. Как же их сравнить и какое направление развивать?
Теоретически шум в квантовом компьютере можно честно измерить с помощью так называемой томографии квантовых процессов. Но для такой процедуры надо определить все возможные конечные состояния квантового компьютера при всех возможных начальных состояниях. То есть для квантового компьютера из N кубит придется сделать около 24N измерений, и даже для скромного прототипа квантового компьютера из восьми кубит потребуется более четырех миллиардов замеров, что практически невозможно.
Канадские ученые обратили внимание на то, что, как правило, квантовые компьютеры содержат несколько (в перспективе много) одинаковых кубит, то есть система обладает определенным набором симметрий. А это значит, что симметричными должны быть и свойства шума и для его описания можно использовать меньше параметров. Так родилась идея симметризации, позволяющая заменить проверку на полном наборе начальных состояний проверкой реакции квантового компьютера только на определенный набор входных данных. Например, в случае компьютера из трех кубит достаточно измерить вероятности того, что ни один или ни два кубита "не испортились" в процессе вычислений. Измерения проводятся несколько раз, пока измеренные вероятности ошибок не достигнут необходимой точности. Число таких измерений медленно, как полином, растет с увеличением числа кубит, то есть методика применима даже для больших квантовых систем.
Предложенная процедура была экспериментально проверена на системе из трех кубит квантовой памяти, реализованной с помощью технологии ядерного магнитного резонанса. Подобные измерения можно проводить с любыми типами квантовых вычислительных устройств. Предложенный канадцами метод произвел большое впечатление на специалистов, получивших мощный инструмент для отладки и сравнения квантовых компьютеров. Следующим, по-видимому, станет ионный квантовый компьютер из восьми кубит, собранный в Инсбрукском университете (Австрия). ГА
Титан в пол-ангстремаНовый рекорд разрешения для электронного микроскопа установила команда специалистов из США и Германии. Потребовалось три года напряженной работы, прежде чем просвечивающий сканирующий электронный микроскоп с коррекцией аберраций добрался до пяти сотых нанометра с предыдущих семи.
В просвечивающем электронном микроскопе (TEM) пучок электронов в вакууме фокусируется на тонком образце, а набор детекторов регистрирует порождаемые при их взаимодействии электроны и рентгеновское излучение. Если пучок сделать достаточно узким и добавить устройство для перемещения образца, то такой микроскоп можно превратить в сканирующий. Высокого разрешения этим приборам мешают добиться сферические и хроматические аберрации - искажения, которые очень похожи на аберрации в оптике. Они возникают из-за того, что пролетающие на разном расстоянии от оси микроскопа электроны фокусируются в разных точках оси, а хроматические аберрации обусловлены разбросом в скорости полета электронов. И если в оптике с подобными искажениями научились бороться давно, вплотную подойдя к дифракционному пределу разрешения микроскопов в половину длины волны, то в электронной микроскопии все гораздо сложнее. Дело в том, что создаваемые внешними полями электронные линзы с цилиндрической симметрией принципиально не могут избавиться от этих аберраций. К тому же очень трудно обеспечить и одинаковую скорость движения электронов. Поэтому обычное разрешение электронного микроскопа отличается примерно в сто раз от длины волны электрона.