Тем не менее абсолютное большинство исследователей, занятых практическим изготовлением искусственных живых объектов, экспериментируют именно с клеточными структурами. Почему?
Голый прагматизм, в общем, никогда не являлся атрибутом научного поиска, однако желаемый практический результат научного исследования или пионерской технологической разработки, конечно же, в немалой степени определяет методики и подходы к созданию нового. Сегодня нам нужны живые системы, во многом аналогичные или полностью повторяющие "конструкции" естественных систем. Просто потому, что мы знаем, как они должны работать, - мы это видим на естественных аналогах.
Ясно, что проще (технологически проще) иметь дело с самообновляемой клеточной структурой, в которой синтезируется нужное нам химическое вещество, чем переводить синтез в систему реакторов, вводя в рассмотрение огромное число дополнительных параметров, связанных с объемными эффектами, температурными и концентрационными градиентами и т. п. Если же мы хотим создать развивающийся организм, то клеточная модель строения как нельзя лучше соответствует принципу дифференциации функций клеток взрослого организма.
Афоризм
Наша жизнь, в сущности, кукольное представление. Нужно лишь держать нити в своих руках, не спутывать их, двигать ими по своей воле и самому решать, когда идти, а когда стоять, не позволять
дергать за них другим, и тогда ты вознесешься над сценой.
Хун Цзычен
Искусственные клеточные мембраны с нужными характеристиками молекулярной проницаемости сегодня научились делать на базе жироподобных веществ - фосфолипидов, однако внутриклеточный объем пока что моделируют жестким каркасом из микропористого аэрогеля, позволяющего поддерживать клеточную мембрану. Подобные "изделия" уже могут иметь практическое значение как "микрозаводы" по выработке тех или иных белков. Вспомним, что еще три года назад ученым из Института Пастера (Франция) совместно с японскими коллегами удалось создать искусственную клетку диаметром 0,01 мм и поместить аминокислоты и другие вещества, необходимые для функционирования клетки, внутрь мембраны ДНК медузы. В результате через сутки искусственная клеточная структура выровняла свою форму, стала сферической, и в ней начался нормальный синтез заданного белка. Режим деления клетки воспроизвести пока не удалось. Аналогичные проекты осуществлены во многих странах мира. Итальянская группа Джованни Муртаса из римского Центра им. Энрико Ферми летом нынешнего года "запустила" искусственную клетку трубчатой топологии.
Вообще же конструированием искусственных клеток различного назначения (включая искусственные аналоги нейронов головного мозга, клетки-сенсоры человеческого уха, клетки-импланты печени и др.) на базе естественных компонентов (мембран, внутриклеточных органелл, цитоплазмы) только в США занимается больше ста лабораторий. В Европе - около двух десятков. Сколько-нибудь надежных данных о разработках россиян у автора нет.
Одним из самых сложных, но и самых увлекательных объектов конструирования, пожалуй, можно считать искусственные генетические структуры. Как известно, в процессе жизнедеятельности каждая клетка производит лишь обусловленные генетической программой белки, строя их из соответствующих природных аминокислот. Так вот, еще в 2001 году Ли Вонг и Питер Шульц из Океанографического института в Калифорнии сумели встроить в естественный геном бактерии кишечной палочки компоненты, которые позволили ей "работать" с аминокислотами, вообще не встречающимися в природе.