Первыми в продажу поступят ячейки и модули для промышленных применений. Емкость ячейки весом 150 г и напряжением 2,4 В достигает 4,2 А·час. Десять ячеек соединяют в 24-вольтовый модуль, оснащенный системой мониторинга температуры, напряжения и состояния заряда/разряда ячеек.
Свойства новых аккумуляторов определяют их основные области применения. Прежде всего это стационарные промышленные установки, где не так важен вес устройства, но необходимы большие мощности и длительный срок службы. Во вторую очередь это питание электромобилей, где также нужны большие токи и долговечность. А в будущем, если удастся повысить емкость аккумуляторов, они смогут побороться и за рынок мобильных устройств. ГА
Новый метод "запоминания" световых импульсов в виде звуковых колебаний оптических волокон предложили физики из Университета Дьюка. Метод работает на всех оптических частотах при комнатной температуре на коммерчески доступном оборудовании и обещает решить проблемы хранения пакетов данных в оптических телекоммуникационных сетях.
Если оптическая сеть сильно загружена, в ней неизбежны коллизии, при которых два пакета данных в виде набора световых импульсов могут прийти в один узел одновременно. В идеале один из них надо бы чуть придержать, чтобы затем отправить вслед за первым. Сегодня для этого приходится преобразовывать световые импульсы в электрические, сохранять их в быстрой памяти, а затем вновь конвертировать в свет. Это сложно, дорого, требует много энергии и сильно тормозит передачу данных.
Новый метод, в принципе, позволяет придерживать световые импульсы, обходясь без электроники. Он основан на так называемом вынужденном рассеянии Мандельштама —Бриллюэна, при котором свет активно взаимодействует со звуковыми колебаниями в материале. В демонстрационных экспериментах ученые послали в обычное оптическое волокно два последовательных импульса "данных" длительностью по две наносекунды. Им навстречу с другого конца волокна был послан мощный "записывающий" лазерный импульс длительностью полторы наносекунды. Его частота чуть отличалась от частоты импульсов данных как раз на столько, чтобы разность частот попадала в звуковой диапазон. В результате нелинейного взаимодействия этих импульсов и материала в оптическом волокне возбудились высокочастотные звуковые колебания. Эти колебания быстро затухают, но если спустя несколько наносекунд в волокно послать еще один мощный "считывающий" лазерный импульс, то первоначальную пару импульсов "данных" удается восстановить из звуковых колебаний в результате обратного нелинейного процесса. В экспериментах удавалось восстановить треть начальной интенсивности спустя 4 наносекунды и два процента спустя 12 наносекунд. Этого времени хранения информации уже достаточно для некоторых приложений, а полностью восстановить амплитуду первоначальных импульсов с помощью оптического усилителя не составляет проблемы.
Авторы уверены, что таким образом можно будет запомнить не только пару импульсов, а целый коммуникационный пакет. А поскольку они использовали лишь стандартное оборудование, их метод гораздо ближе к практике, чем все альтернативные разработки. К сожалению, прежде чем такие запоминающие волокна можно будет встроить в телекоммуникационные сети, предстоит еще хорошо поработать. Необходимая мощность лазера для записи и считывания информации чересчур велика, а время хранения импульсов хорошо бы увеличить до секунды. Но эти проблемы ученые надеются решить, изготовив волокна из более подходящего материала. ГА
Физики из Технологического университета Лулео (Швеция) опубликовали любопытную статью, в которой сомнительная идея о существовании преонов превращается во вполне проверяемую рабочую гипотезу.
Согласно Стандартной модели физики элементарных частиц, все вещество во Вселенной состоит из шести кварков и шести лептонов. Однако около тридцати лет назад некоторые теоретики решили, что даже дюжина — слишком много. То есть лептоны и кварки, в свою очередь, состоят из более мелких частиц, преонов. Достаточно, например, всего трех. С тех пор идея существования преонов пользовалась у теоретиков то большей, то меньшей популярностью, но по сей день ни одна из разнообразных преонных теорий не вела к экспериментально проверяемым фактам. Слишком много энергии потребовалось бы, чтобы расколотить кварк на преоны, и такого уровня нельзя достичь ни на одном из современных ускорителей. А то, что нельзя проверить, уже выходит за рамки науки.