Выбрать главу

Если оптическая сеть сильно загружена, в ней неизбежны коллизии, при которых два пакета данных в виде набора световых импульсов могут прийти в один узел одновременно. В идеале один из них надо бы чуть придержать, чтобы затем отправить вслед за первым. Сегодня для этого приходится преобразовывать световые импульсы в электрические, сохранять их в быстрой памяти, а затем вновь конвертировать в свет. Это сложно, дорого, требует много энергии и сильно тормозит передачу данных.

Новый метод, в принципе, позволяет придерживать световые импульсы, обходясь без электроники. Он основан на так называемом вынужденном рассеянии Мандельштама —Бриллюэна, при котором свет активно взаимодействует со звуковыми колебаниями в материале. В демонстрационных экспериментах ученые послали в обычное оптическое волокно два последовательных импульса "данных" длительностью по две наносекунды. Им навстречу с другого конца волокна был послан мощный "записывающий" лазерный импульс длительностью полторы наносекунды. Его частота чуть отличалась от частоты импульсов данных как раз на столько, чтобы разность частот попадала в звуковой диапазон. В результате нелинейного взаимодействия этих импульсов и материала в оптическом волокне возбудились высокочастотные звуковые колебания. Эти колебания быстро затухают, но если спустя несколько наносекунд в волокно послать еще один мощный "считывающий" лазерный импульс, то первоначальную пару импульсов "данных" удается восстановить из звуковых колебаний в результате обратного нелинейного процесса. В экспериментах удавалось восстановить треть начальной интенсивности спустя 4 наносекунды и два процента спустя 12 наносекунд. Этого времени хранения информации уже достаточно для некоторых приложений, а полностью восстановить амплитуду первоначальных импульсов с помощью оптического усилителя не составляет проблемы.

Авторы уверены, что таким образом можно будет запомнить не только пару импульсов, а целый коммуникационный пакет. А поскольку они использовали лишь стандартное оборудование, их метод гораздо ближе к практике, чем все альтернативные разработки. К сожалению, прежде чем такие запоминающие волокна можно будет встроить в телекоммуникационные сети, предстоит еще хорошо поработать. Необходимая мощность лазера для записи и считывания информации чересчур велика, а время хранения импульсов хорошо бы увеличить до секунды. Но эти проблемы ученые надеются решить, изготовив волокна из более подходящего материала. ГА

Преоны выходят из тени

Физики из Технологического университета Лулео (Швеция) опубликовали любопытную статью, в которой сомнительная идея о существовании преонов превращается во вполне проверяемую рабочую гипотезу.

Согласно Стандартной модели физики элементарных частиц, все вещество во Вселенной состоит из шести кварков и шести лептонов. Однако около тридцати лет назад некоторые теоретики решили, что даже дюжина — слишком много. То есть лептоны и кварки, в свою очередь, состоят из более мелких частиц, преонов. Достаточно, например, всего трех. С тех пор идея существования преонов пользовалась у теоретиков то большей, то меньшей популярностью, но по сей день ни одна из разнообразных преонных теорий не вела к экспериментально проверяемым фактам. Слишком много энергии потребовалось бы, чтобы расколотить кварк на преоны, и такого уровня нельзя достичь ни на одном из современных ускорителей. А то, что нельзя проверить, уже выходит за рамки науки.

Но два года тому назад шведские теоретики решили посмотреть, что будет, если из преонов образовать звезды. Если взять канонический сценарий Большого взрыва, в котором, согласно современной физической вере, родилась наша Вселенная, мы увидим, что сначала были лептоны и кварки. Кварки, остывая, объединились в протоны и нейтроны, те, еще подостыв и объединившись с электронами, образовали атомы, и так далее. А значит, не будет большой ересью предположить, что еще до лептонов и кварков были преоны, и часть из них из-за флуктуаций не стала обычной материей, а образовала чисто преонные звезды. Обсуждают же нейтронные звезды и звезды из кварков, чем же преоны хуже?

Прикинули, какими могут быть преонные звезды. Оказалось, что их масса должна быть значительно меньше, чем у обычных звезд, — не больше сотни земных масс, но плотность гораздо выше, чем у нейтронных звезд и даже звезд из кварков. Нижнего предела массы вроде бы нет, но ученые решили, что более вероятны преонные звезды размером с горошину и с массой чуть меньше, чем у Луны. Такой горох, редко рассеянный по пространству, слишком мал, чтобы его наблюдать непосредственно, зато он прекрасный кандидат на роль темной материи.