Выбрать главу

Мы когда-то писали о задачах-вызовах, за решение которых обещаны призы в миллион долларов. Как вы считаете, такие вызовы стимулируют развитие науки или только спортивную ее сторону?

- Есть два типа жизни в математике. Два способа мышления. Вызовы, знаменитые проблемы, которые многие хотят решить, привлекают людей определенного склада ума, их можно назвать великими спортсменами. Они хотят выиграть. Хотят получить золото. Но есть и те, кто стремится открывать неизвестные острова, материки. Такие люди делают работы, нацеленные не на решение проблем, а на открытие новых направлений. И то и другое замечательно, и то и другое стимулирует развитие науки.

Можно ли привести недавние достижения, относящиеся ко второму типу?

- Я бы назвал пионерские работы по теории узлов (см. врезку. - Л.Л.-М.). Возник новый язык, открыты многочисленные и очень интересные инварианты узлов - полином Джонса, инвариант Васильева. Проблема классификации узлов пока не решена. Но открыт новый мир, мир инвариантов, которые управляют узлами, и сейчас этим миром занимаются ради него самого. Жизнь в этом мире необычайно увлекательна, изучать инварианты так интересно, что люди занимаются ими, даже не будучи уверены в том, что проблема классификации будет решена. К тому же эта область имеет массу приложений, в первую очередь в физике. Надо сказать, что все по-настоящему глубокие вещи в математике так или иначе связаны с какими-то соображениями из математической физики.

Значит, наибольший толчок развитию математики дает именно физика? Или компьютерный мир тоже?

- Полагаю, что и физика, и компьютерный мир. Физика мне ближе, я все-таки занимаюсь сейчас гамильтоновыми системами и вижу массу новых идей, возникающих из приложений в физике и механике. Второе, что я вижу, - в компьютерном мире (понимаемом широко) возникает очень много идей, которые важны для фундаментальной математики. Я бы назвал еще и биологию как важный источник задач для современной математики. Но это лишь то, что связано с моими собственными научными интересами.

Над чем вы сейчас работаете?

- Над проблемой интегрирования гамильтоновых систем дифференциальных уравнений (эти системы возникают в огромном количестве задач классической механики и других областей физики. - Л.Л.-М.). Недавно мы с моими сотрудниками открыли новые инварианты таких систем, позволяющие их классифицировать. Есть известная прикладная задача: даны две системы дифференциальных уравнений, описывающие какие-нибудь процессы, вопрос - эквивалентны ли эти системы? Может быть, на самом деле процесс один и тот же, просто уравнения записаны в разных системах координат? Желательно иметь такие инварианты, которые можно вычислить для каждой из систем и посмотреть: если инварианты совпали, то системы эквивалентны, не совпали - не эквивалентны. Вот такие инварианты мы нашли несколько лет тому назад - это графы с некоторыми метками. Они применимы к разным классам систем, в первую очередь к динамике твердого тела - к движению твердого тела в жидкости, в том числе намагниченной, к движению тела с полостями, тела с неголономными связями. В частности, мы с А. Болсиновым доказали теорему об эквивалентности двух известных систем уравнений: движения твердого тела (случай Эйлера с закрепленной точкой) и динамики геодезических на эллипсоиде. Причем там очень тонкий эффект - эквивалентность есть, но ее нельзя сделать гладкой.

Теория узлов

В отличие от функций Морса и гомологий, теория узлов имеет дело не с многомерными абстракциями, а с узлами в самом прямом житейском смысле слова - заплетенными веревками со связанными концами. До сих пор никому не удалось найти алгоритм, определяющий, одинаковы ли два заданных узла - то есть можно ли один из них превратить в другой, не разрывая и не развязывая веревку. Если бы мы жили в плоскости, никаких узлов у нас бы не было - их в плоскость не засунешь. В четырехмерном пространстве любой узел можно превратить в обычное колечко, а его потом - в любой другой узел, так что вопрос снимается. Но вот в нашем 3D узлы оказались настолько запутанными, что вокруг них образовалась целая наука - как теперь выясняется, имеющая прямой выход в квантовую теорию поля. На рисунке - сложный на вид узел, но - кто бы мог подумать! - это лишь иллюзия, перед нами обычное, незаузленное кольцо.

Это затягивает

Что сейчас мотивирует студентов мехмата? Они нацелены именно на науку или просто хотят получить хорошее образование, престижный диплом, чтобы затем заняться чем-нибудь другим?