- Как всегда - далеко не все видят себя будущими учеными.
Как всегда? То есть радикальных изменений вы не замечаете?
- Нет, не замечаю. И раньше основная масса студентов хотела получить хорошее образование, которое обеспечит им достойное место в обществе. Наши студенты пять лет учатся совершенно уникальному способу мышления. Тут и логика, и гибкость формирования понятий, и умение формализовать прикладную задачу для математики. Это получают все, даже не круглые отличники. В этом, собственно, основная польза от изучения фундаментальных наук - математики, по крайней мере. Но тех, кто потом пойдет работать в фундаментальную науку, немного. Таких действительно стало меньше, чем раньше, поскольку в последние годы был внедрен новый тип психологии - стремление зарабатывать деньги. Это хорошо. Но есть люди, которые понимают, что не в деньгах счастье. И которые странным образом - разумеется, от денег не отказываясь, - видят свое будущее в более… ну, что ли, идеализированном виде. Такие ребята всегда были и будут, на них, собственно, и держится фундаментальная наука. Они хотят получить в жизни минимальный фундамент под ногами, но в целом ориентированы на эдакую идеальную действительность.
Нет ли у вас ощущения, что теперь у студентов не то чтобы культурный уровень снизился, а просто это другой культурный слой, не тот, что раньше?
- Это есть. И опять же объясняется сменой идеологии. Ребята, начиная с 4–5-го курса, вынуждены зарабатывать деньги. Причем не всегда потому, что не хватает на жизнь. Их подталкивает атмосфера в обществе в целом: идея, что необходимо иметь большие деньги. Это мешает многим, рождает прагматизм, в целом студенты стали более прагматичны. Раньше, когда зарплаты были более-менее унифицированы, для каждого слоя был свой уровень доходов: кандидат, доктор, профессор, инженер. В те годы люди тратили меньше свободного времени на зарабатывание дополнительных денег. Сейчас вы можете, потратив свое время, заработать денег все больше, больше, больше и больше. Далеко не все могут на этом пути остановиться, в том числе и студенты. Это затягивает. Это увлекает. Ты можешь обедать в студенческой столовой, или в профессорской столовой на втором этаже, или в кафе, в ресторане, в шикарном отеле - верхней границы нет.
Многих привлекает процесс подъема по жизненным ступенькам. В итоге у людей не остается времени, которое раньше мы отдавали культуре, искусству, хобби, разговорам о живописи, о науке, о музыке, о театрах, о путешествиях, о книгах, о стихах. В коридорах мехмата все реже слышишь такие разговоры. Это накладывает заметный отпечаток на среду в целом. Она изменилась. Я не знаю, хуже это или лучше. Но думаю, что это не очень хорошо.
Как же может развиваться дальше мир или страна, чтобы ситуация изменилась? Какие могут быть сценарии?
- Не знаю. Вернуться в прошлое невозможно, нельзя войти в одну реку дважды. Но тот капитализм, который существует у нас, вредит более широкому, научному взгляду на жизнь.
А как же Запад, опять-таки: там все это существует уже давно, и тем не менее..
- Российская культура всегда была и пока остается более широкой, энциклопедической. Запад уже давно предпочел идеологию узкой специализации, вследствие чего нередко достигается высокий спортивный результат в каждой области, когда все брошено на достижение одной цели. Это очень хорошо и важно, но за это приходится платить - людям и обществу в целом - меньшим энциклопедизмом, чем у нас. То же самое мы видим и в математике. Это разные стили мышления. Неясно, что лучше или хуже, и там и там есть плюсы и минусы - просто разный стиль.
Больше тридцати лет назад вы делали на мехмате доклад о топологическом подходе к строению натурального ряда чисел: 1, 2, 3, …
- Да, было такое.
Там был очень необычный подход к самым основам математики. Думаете ли вы время от времени о такого рода "вечных вопросах"?
- О строении натурального ряда думаю, но, к сожалению, только изредка. Эта работа - точнее, просто мысль, идея, - была давно, она меня сильно увлекала и до сих пор увлекает: как описать поведение очень больших чисел. Настолько больших, что они даже чуть-чуть "размытыми" становятся. Это ни к чему конкретному не привело, и времени на это у меня не очень много. Но иногда такие мысли всплывают, и они мне очень нравятся - несмотря на то что ничего конкретного доказать я, может быть, и не смогу. Однако просто для себя полезно поразмышлять в неформализованном, чисто интуитивном стиле. Я хорошо понимаю Анри Пуанкаре (он один из авторов интуиционизма в математике), который считал интуицию важнейшей формой математического мышления. Это вещь абсолютно неформализуемая. У каждого математика есть свое представление об этом, его очень трудно объяснить. Да и не нужно. Но интуиция сродни озарению - озарение вещь тоже очень зыбкая, философски трудно объяснимая, трудно комментируемая, - но это работает. Интуиция и озарение - одно и то же по большому счету. У меня к этому есть склонность, вкус, к тому же я понимаю, что такие размышления иногда помогают даже в конкретных задачах.