Выбрать главу

Не менее неожиданной оказалась перспективная топология самой антенной решетки. Оказалось, что решетка, в которой элементы расположены не в узлах прямоугольной сетки, а вдоль многозаходной спирали (причем формула для полярной координаты [угла] n-го элемента содержит в явном виде выражение так называемого золотого сечения), обладает гораздо лучшими характеристиками по сравнению с обычной. Внешне такая решетка сильно напоминает цветок подсолнуха, где роль "семечек" играют активные вибраторы. Удивительно красивый и нетривиальный результат! [Получен Боэрлингером (Boerlinger), опубликован в IEEE Magazine on Antennas and Propagations, 2003, V.45, No.1, p.159, и защищен патентом США (D.W.Boerlinger, Patent USA US 6,433,754 B1, 13 August 2002)]

Толковый словарик

Диаграмма направленности. Каждый элемент антенной решетки сам по себе способен принимать радиоволны с любого направления. При суммировании сигналов от нескольких элементов у системы появляется пространственная избирательность, то есть свойство усиливать сигнал, приходящий с одного направления, и ослаблять с другого за счет интерференции. Антенная решетка, элементы которой снабжены регулируемыми линиями задержки в тракте прохождения сигналов, за счет интерференции их с заранее рассчитанными фазами на входе приемника, обладает возможностью выбора нужного направления приема. Диаграмма направленности, собственно, и показывает величину усиления (ослабления) сигнала в зависимости от его направления.

Лепестки диаграммы направленности - их еще называют "лучи" - отдельные направления, с которых антенная решетка принимает сигнал с бо,льшим усилением. Соответственно, с главного направления диаграммы антенна принимает сигнал с максимальным усилением. Однако физика интерференционных процессов определяет наличие и так называемых боковых лепестков диаграммы направленности антенной решетки - дополнительных направлений, с которых антенна также "охотно" принимает сигналы. На практике боковые лепестки мешают приему, так как направлены не на основной объект наблюдения и принимают не те сигналы, которые хотелось бы…

Ионосферные флуктуации. Ионизированный слой земной атмосферы, называемый ионосферой, весьма подвижен и оказывает значительное влияние на прохождение радиоволн из космоса до поверхности земли. Постоянные, случайные изменения характеристик этого атмосферного слоя носят название ионосферных флуктуаций. Последние же приводят к возникновению столь же случайных амплитудных и фазовых помех приему сигналов из космоса.

Видимо? Не видимо!..

Автор: Юрий Нешпор

Астрофизика занимается исследованиями физических процессов, протекающих внутри и в окрестностях различных объектов Вселенной, причем мы знаем, что многие из этих процессов невозможно воспроизвести в земных условиях - отсюда особый интерес к "экстремальным", высокоэнергетическим проявлениям физической природы Мироздания.

Автор работает заместителем заведующего лабораторией гамма-астрономии Крымской астрофизической обсерватории

В глубинах космоса можно встретить магнитные поля всего в 10–6 гаусс, то есть в миллионы раз слабее магнитного поля Земли, но встречаются и 1012 гаусс, то есть их напряженность в тысячи миллиардов раз больше магнитного поля Земли. Объекты с такими полями, как правило, излучают огромное количество энергии. Например, галактики с активными ядрами излучают до 1046 эрг/с, что во многие миллиарды раз больше энергии, которую излучает наше Солнце.

Надо сказать, что многие излучающие объекты "светят" в широком диапазоне частот, их "видят" обычные и радиотелескопы, однако некоторые из них загадочным образом "черны". Впервые мы узнали об их существовании лишь благодаря гамма-телескопии. И лишь она дает возможность в этом случае хоть что-то рассмотреть на кухне Мироздания, где царят поистине непередаваемые уровни энергий и масштабы процессов.

В результате наблюдений на наземных гамма-телескопах к настоящему времени зарегистрировано гамма-излучение сверхвысоких энергий (СВЭ) от четырнадцати объектов, пять из которых были открыты астрономами Крымской астрофизической обсерватории (КрАО). Чаще всего - это активные ядра галактик (АЯГ). Восемь АЯГ принадлежат к типу лацертид. Они получили свое название от галактики BL Lac. Лацертиды характеризуются переменностью большой амплитуды в оптическом диапазоне, переменным радиоизлучением и заметной поляризацией излучения. Они имеют вид звездоподобных объектов, окруженных туманными оболочками. Гамма-излучающая галактика M 87 - это радиогалактика с джетом в ядре; объекты Geminga, Vela, Crab и Cyg X-3 содержат пульсары, излучающие гамма-кванты СВЭ.