Выбрать главу

Новая техника "съемок" позволяет изучать не только ионизацию атомов, но и процессы рассеяния электронов на нейтральных атомах и ионах, а также квантовые состояния атомов сразу после их ионизации. Теперь у теоретиков появилась прекрасная возможность проверить свои модели и лучше разобраться в сложных квантовых электронных процессах. ГА

Новое начинание Януса

Любопытное явление удалось наблюдать химикам из Университета Северной Каролины. Оказывается, движением асимметричных микрочастиц в растворе можно эффективно управлять с помощью переменного электрическо поля. Это свойство очень пригодится биологам и технологам для работы на микро и наномасштабах и может стать основой многих новых электронных устройств.

То, что внешнее электрическое поле активно влияет на движение различных ионов и микрочастиц в растворах и электролитах, давно известно. Но такого интересного эффекта еще не доводилось наблюдать никому. Ученые взяли шарики из полистирола микронных размеров и покрыли одну их половину тонким слоем золота (на эту роль подойдет и любой другой химически стойкий металл). Такие частицы в честь двуликого древнеримского бога окрестили Янус-частицами.

Янус-частицы поместили в раствор поваренной соли, туда же ввели пару электродов и стали прикладывать к ним напряжение величиной около ста вольт, меняющееся с частотой от ста герц до десяти килогерц. После включения тока частицы сначала поворачивались так, чтобы плоскость между двумя их половинками стала параллельна электрическому полю. Затем частицы начинали двигаться вдоль электродов, перпендикулярно полю, своей пластиковой половинкой вперед - со скоростью до нескольких десятков микрон в секунду. Дело в том, что во внешнем поле металлическая поверхность частиц поляризовалась гораздо сильнее, чем пластиковая, что вызывало электроосмотическое обтекание частицы жидкостью и толкало ее в противоположном направлении.

Сейчас даже трудно представить, какие устройства можно изготовить на основе Янус-частиц. Их можно использовать и для простого перемешивания жидкости, и для сложной доставки лекарств или сенсоров по назначению, и даже для сборки наноустройств. Вдохновленные успехом ученые уже приступили к созданию теории движения ассиметричных частиц с более сложной формой и замысловатой поверхностью, а также к постановке новых экспериментов. ГА

Китайская бумага

На удивление простой способ изготовления превосходной бумаги из углеродных нанотрубок предложен в пекинском Университете Циньхуа (Tsinghua). Новая нанобумага прочна и хорошо проводит тепло и электрический ток.

Ученые давно пытаются создать некое подобие бумаги из углеродных нанотрубок. Есть методы, основанные, например, на осаждении нанотрубок из раствора в электрическом поле, которое задает их ориентацию. Однако добиться надежного сцепления нанотрубок, однородности состава и стабильной толщины слоя бумаги очень трудно.

В китайском способе сперва по отработанной технологии на кремниевой подложке выращивают густой лес из трубок диаметром 10 нм и длиной около 100 мкм, затем накрывают тонкой микропористой мембраной и прокатывают сверху стальным валиком. "Наностволы" ложатся строго в направлении прокатки, между нанотрубками образуется множество контактов, и остается только отделить бумагу от подложки и смыть мембрану спиртом.

Чтобы продемонстрировать прочность бумаги, ученые сложили из нее традиционную фигуру оригами - журавлика. Измерения показывают, что теплопроводность "нанобумаги" не хуже, чем у чистой меди, и значительно выше, чем у бумаги, полученной по другим технологиям. А это значит, что ее можно использовать в качестве теплоотводящей прослойки в чипах.

Кроме того, углеродная бумага обладает хорошо развитой поверхностью, что делает ее пригодной для использования в качестве электродов в аккумуляторах и суперконденсаторах. Такие конденсаторы могут запасать на три порядка больше энергии, чем обычные, и отдавать ее за секунды. Их все активнее используют, например, на транспорте с электрическим приводом для разгона и торможения.