По сравнению с медными оптические внутричиповые линии связи теоретически позволят добиться стократного увеличения пропускной способности при десятикратном снижении потребляемой энергии. И хотя все ключевые элементы таких систем, в общем-то, уже разработаны, увидеть массовые процессоры с оптическими коммутирующими линиями можно будет в лучшем случае в следующем десятилетии. ВГ
Удивительные результаты получили ученые из Национального института стандартов (США) и Мэрилендского университета, исследовавшие механические свойства наночастиц с помощью атомно-силового микроскопа и компьютерного моделирования. Оказывается, на наномасштабах даже хрупкие материалы вроде кварца могут стать пластичными, как золото.
На привычных масштабах предел разрушения материала зависит от его способности сохранять свою форму под нагрузкой. Атомы пластичных веществ перемещаются на большие расстояния, сохраняя связи между собой, тогда как в хрупких материалах быстро возникают дефекты, из которых под нагрузкой развиваются трещины.
На наномасштабах структурные дефекты отсутствуют, и все материалы практически "идеальны", что существенно повышает их прочность. Кроме того, из-за малых размеров нанообъектов большинство их атомов находится на поверхности, где они слабее связаны с остальными атомами и поэтому более подвижны. Это превращает даже хрупкие материалы в пластичные, и их новые свойства начинают явно противоречить здравому смыслу. Исследователи считают, что термины "хрупкий" или "пластичный" на наномасштабах уже неприменимы.
С помощью атомно-силового микроскопа ученые наблюдали, как идет процесс разрушения в микромире. Они с удивлением обнаружили, что наночастицы хрупкого кварца растягиваются почти так же сильно, как серебряные или золотые, и продолжают деформироваться даже тогда, когда давно должны были бы сломаться.
Однако компьютерные расчеты, в основу которых был положен метод молекулярной динамики, подтвердили эти наблюдения. Подвижность атомов на поверхности наночастиц увеличивает их пластичность независимо от того, кристаллическим или аморфным является материал. Причем чем меньше наночастицы, тем больше увеличивается их податливость и прочность на разрыв, а у кристаллов это увеличение выражено еще сильнее.
Пока ученые только в самом начале пути, и новую теорию и базу данных по механическим свойствам различных наночастиц еще предстоит создать. Эти сведения окажут неоценимую помощь проектировщикам электронных и микромеханических наноустройств будущего. ГА
Ученым из Колумбийского университета и Калифорнийского технологического института впервые удалось надежно измерить электропроводность молекулы ДНК. Эксперименты объяснили многолетние неудачи коллег и выявили серьезные проблемы, с которыми могут столкнуться конструкторы молекулярных вычислительных устройств, основанных на ДНК.
С тех пор как более полувека назад удалось определить структуру и функции двойной спирали ДНК, много усилий было затрачено на изучение электронных свойств этой жизненно важной кислоты. Но все попытки как-то измерить хотя бы электрическую проводимость гигантской молекулы до сих пор давали только противоречивые, плохо согласующиеся результаты. Молекула вела себя то как хорошо проводящий металл, то как изолятор, а порой и как полупроводник. При низких температурах ДНК иногда демонстрировала даже сверхпроводящие свойства.
С одной стороны, способность молекул ДНК быть и проводником, и изолятором давала надежду, что на их основе можно будет создавать мощные и миниатюрные молекулярные компьютеры, которые, не исключено, смогут самостоятельно собираться и хотя бы частично воспроизводиться. Но результаты экспериментов долго не находили объяснений.
В новых опытах для измерения электропроводности ДНК ученые использовали хорошо проводящую углеродную нанотрубку с толщиной стенок в один атом и диаметром, сопоставимым с диаметром самой спирали ДНК. Нанотрубку присоединили к электродам и из ее середины с помощью плазмо-ионного травления удалили кусок длиной 6 нм. Во время этой процедуры концы нанотрубки окислились, что позволило прочно соединить их со вставленной в зазор молекулой ДНК. После этого электропроводность ДНК померили, подав 50 мВ на электроды и измеряя текущий по цепи ток. Измерения можно было производить при нормальных условиях, в подходящих растворах и используя энзимы для контроля над ДНК.
Оказалось, что электропроводность ДНК примерно такая же, как у графита, что хорошо согласуется с ее структурой. Но если из большой молекулы ДНК удалить всего один нуклеотид, то ее сопротивление сразу возрастет в триста раз! Такая чувствительность и плохой контакт с обычными электродами легко объясняют, почему все предыдущие эксперименты потерпели фиаско.