Кто из них выше всех?".
Несмотря на простоту такого рода примеров ("Петя, Толя, Боря", с одной стороны, и "камень, ножницы, бумага" - с другой), транзитивность и нетранзитивность превосходства вызывают дискуссии самых разных специалистов, ведущиеся на самых разных уровнях.
Причем часть из этих специалистов убеждена в том, что на самом деле, если глубоко разобраться и тонко учесть все факторы ("taking all considered"), нетранзитивность превосходства окажется иллюзией, следствием ошибочных рассуждений и неправильно интерпретированных наблюдений. Другие, напротив, считают, что как раз транзитивность превосходства - это всего лишь результат выдергивания и искусственной изоляции короткой цепочки превосходств из более общего цикла взаимодействий, в котором они реально существуют. Причем и те и другие рассуждают достаточно строго, и их не упрекнешь в очевидных логических ошибках - например, в попытках поставить и решить задачу типа "Петя выше Толи, Толя толще Бори. Кто из них директор?".
Не стану скрывать своих пристрастий - ситуации нетранзитивности превосходства мне представляются более увлекательными. О них и расскажу, выбрав самые, на мой взгляд, интересные.
Брэдли Эфрон (Bradley Efron), специалист по статистике из Стэнфордского университета, предложил комплекты игральных костей, обладающих парадоксальными свойствами [Секей Г. Парадоксы в теории вероятностей и математической статистике. М.:Мир, 1990.].
(Психолог В. А. Петровский удачно назвал эти комплекты "бойцовским клубом игральных кубиков".) Все кубики любого такого набора одинаковы и "честны" в отношении своей геометрической формы, веса и т. д.
Единственная разница между ними - в числах, нанесенных на их грани. Числа подобраны так, что на верхней грани первого кубика при бросках чаще выпадает большее число, чем на втором; на втором чаще выпадает большее число, чем на третьем, и т. д., но последний кубик чаще показывает большее число, чем первый (!). Благодаря этому первый систематически выигрывает у второго, второй - у третьего и т. д., но последний кубик - казалось бы, аутсайдер! - систематически выигрывает у первого - казалось бы, безусловного фаворита.
Кто не верит в этот факт нетранзитивности превосходства "чаще показывать большее число" (сразу поверить трудно), может поэкспериментировать в Интернете на странице edp.org/dice.htm с симуляцией соревнований или самостоятельно решить приведенную ниже задачку [Roberts T. S. A ham san d - wich is better than no thing: Some thoughts about transitivity // Australian Senior Ma thematics Journal. 2004.18 (2). P. 60–64].
Есть четыре игральных кубика со следующими числами на гранях.
Кубик A: 7, 7, 7, 7, 1, 1
Кубик B: 6, 6, 5, 5, 4, 4
Кубик C: 9, 9, 3, 3, 3, 3
Кубик D: 8, 8, 8, 2, 2, 2
Каково соотношение побед и поражений в парах A-B, B-C, C-D и D-A?
(Ответ: каждый предшествующий кубик в среднем выигрывает у последующего вдвое больше партий, чем проигрывает. Но последний кубик D выигрывает вдвое больше партий у кубика А, чем проигрывает ему.)
Поэтому при возможности выбора из пары кубиков А и В надо выбрать А, оставив сопернику более "проигрышный" кубик В; при выборе между В и С надо выбирать В; при выборе между С и D надо выбирать C; но при выборе между D и А надо выбирать D.
Известный популяризатор математики Мартин Гарднер, который в течение многих лет вел математическую рубрику в журнале Scientific American, писал, что нетранзитивные кости "позволяют глубже осознать значение…