Честно говоря, я был уверен, что в наше время все проблемы с точностью позиционирования курсора уже решены. Еще бы - ведь на рынке полно моделей с разрешением 1600 dpi, и даже 3200 dpi. Каково же было мое удивление, когда я обнаружил, что у новой красотки беда со зрением! Ее скоровидение осталось почти на уровне Logitech MouseMan! При резких движениях голубка близоруко щурится на поверхность коврика, словно это обратная сторона Луны! Так что комфортно работать в отсутствие ускорения можно лишь на одном небольшом мониторе, с разрешением не более 1440 пикселов по горизонтали.
Я был так удивлен открытием, что ради эксперимента подключил к приемнику старушку MX700. К чести нового приемника, он корректно распознал предка и даже соизволил с ним пообщаться. При прямом сравнении никаких сомнений не осталось - у MX700 частота сканирования поверхности раза в два выше, чем у Cordless Click! Plus, и ни драйверы, ни настройки PS/2- или USB-порта тут ни при чем, ведь линк с мышью происходит в обход всего внешнего мира. Зато - виват комфорту! - мышь на своих двоих аккумуляторах может пробежать даже не знаю сколько, до сих пор (уже две недели с первой зарядки) они и не думают садиться.
С досады я даже не поленился написать в Logitech, причем свои соображения пришлось излагать на английском.
Оператор удобно прикрылся моим вероятным косноязычием, отделался общими словами о разрешении в dpi, в упор отказавшись отвечать на прямые вопросы о частоте сканирования.
Итак:
не все мыши Logitech одинаково удобны;
лучшая мышь для активной работы -
MX700;
X700 до идеала недостает горизонтального качания колеса (и надежности кнопок);
похоже, что продолжительность работы мыши без дозарядки у Logitech обратно пропорциональна частоте сканирования поверхности;
у Cordless Click! Plus эта частота очень низкая, поэтому модель можно рекомендовать только для небольших одиночных мониторов или для работы с ускорением;
достойная замена MX700 еще не найдена! Так что ждите продолжения.
ТЕХНОЛОГИИ: Оцифровыватели
Автор: Юрий Ревич
Еще лет двадцать назад слово "сканирование" употреблялось в сугубо технических текстах (и еще, может быть, в фантастических романах), где оно означало последовательный, поэлементный обход какого-то объекта: скажем, в радиолокации - сканирование участка неба радиолучом; в кинескопе - сканирование экрана электронным пучком строка за строкой. Поскольку компьютерной графики как таковой еще не существовало, приборы, которые преобразовывали плоское изображение (о трехмерном тогда и не мечтали) в набор цифр, именовавшиеся дигитайзерами[От англ. digitizer - букв. "оцифровыватель".], были устроены совсем иначе, нежели современные сканеры.
В тех дигитайзерах - графических планшетах - роль механизма для сканирования играл человек, который направлял специальное перо в нужную точку изображения (обычно карты, графика или чертежа), а планшет по команде записывал в цифровом виде координаты пера. В конце концов, получался некий массив чисел, который описывал контуры объектов с точностью, зависящей от размеров планшета, оригинала и нервной системы оператора.
Результаты такого "сканирования", размноженные затем на принтере или плоттере, были по меньшей мере не хуже, чем при ручном калькировании чертежей.
Идея современных планшетных сканеров, считывающих оригинал поточечно и формирующих из полученных данных растровое изображение (то есть, по сути, выполняющих операцию, обратную той, что выполняет принтер), пришла в голову Рэю Курцвейлу[Более известному своими футорологическими предсказаниями (экстремально-технократической направленности), а также музыкальными синтезаторами Kurzweil, системами распознавания речи и пр. Основатель группы компаний Kurzweil Technologies.] больше тридцати лет назад. Но использование этого прибора еще долго оставалось уделом специалистов. Широкому распространению мешала дороговизна, капризность и фантастическая "задумчивость" ранних образцов сканеров - только представьте себе, сколько времени займет одна лишь передача в компьютер 30-мегабайтного файла (что примерно соответствует оригиналу А4, сканированному с 24-битным цветом и стандартным ныне разрешением 300 dpi) через COM-порт с максимально возможной для него скоростью 115 200 бит/с (подсказка: примерно 45 минут). Но камнем преткновения было не только это - не меньше времени отнимала и обработка изображения. Даже сейчас в сканерах устанавливают отнюдь не Core Duo, перекладывая большую часть работы на центральный процессор "главного" компьютера, а в те времена с этим делом и вовсе вынуждены были управляться 16-битные контроллеры.
Так что, перефразируя знаменитый перл Кена Ольсена, основателя компании DEC, который в конце 1970-х заявил, что "вряд ли кому-то захочется иметь компьютер дома", скажем с полным на то основанием: вряд ли кому-нибудь захотелось бы иметь дома такой сканер. Правда, изображения с перечисленными выше характеристиками тогда сканировали редко: сканеры были в основном черно-белыми, а их разрешение едва достигало указанных 300 dpi. Компания Mustek утверждает, что выпустила первый в мире цветной 24 битный планшетный сканер с достаточно высоким разрешением (1200 dpi) лишь в 1992 году, причем он формировал изображение в три прохода - для каждого цвета в отдельности.
В середине 1990-х получили распространение профессиональные цифровые камеры, использующие принцип сканирования. У них за объективом стояла линейка фотодатчиков, которая медленно (процесс занимал минуты) проходила в плоскости изображения, формируя довольно приличные даже по сегодняшним меркам картинки. Так, выпущенная в 1995 году камера Leaf Lumina имела разрешение 2700х3400 (10 мегапикселов), а цифровой задник[Задник - сменная задняя стенка фотокамеры, позволяющая менять размеры кадра, форматы используемой пленки или заменять ее цифровой матрицей.] PhotoPhase от фирмы Phase One - аж 5000х7200 (36 мегапикселов). Другая сканирующая приставка от Phase One под названием PowerPhase, выпущенная в 1997 году, переплюнула по разрешению большинство современных матриц, кроме появившихся в самое последнее время 50–60-мегапиксельных, - она давала изображение 7000х7000 точек. Любопытно, что цена монстров, позволяющих получать подобные разрешения, и составляющая десятки килобаксов, и по сей день осталась на том же уровне и даже немножко выросла (например, PowerPhase в свое время стоила $30К, а современная 60-мегапиксельная камера P65+ от той же Phase One - $42K), но, конечно, с переходом на двухмерные матрицы время выдержки сократилось до обычных в фотографии величин. Хотя личные впечатления тех, кому довелось попользоваться фотоаппаратурой с такими экстремальными разрешениями, далеки от восторженных: задники греются, виснут и вообще глючат со страшной силой.
Неизбежно должно было возникнуть и противоположное явление: появились сканеры, использующие вместо линейки матрицу фотодатчиков. Такие сканеры получили наименование проекционных и поначалу имели небольшое разрешение, так как использовали сенсоры от видеокамер.
Но затем положение изменилось, и сейчас проекционные сканеры применяют там, где требуется большая глубина резкости. Например, в Российской государственной библиотеке подобные устройства ценой около $100 тысяч (производства все той же датской фирмы Phase One, которая вот уже больше десяти лет лидирует в области цифровой фотографии уровня hi-end) используются для перевода в цифру оригиналов, которые нельзя раскрывать полностью (cм. фото).