Выбрать главу

Подробности "чудесного предсказания" действительно вселяют подозрения. Пользовательский аккаунт, от имени которого производились изменения статьи, судя по всему, был создан специально для дополнения жизнеописания Пэйлин, а сам выбранный автором псевдоним - Young Trigg - намекает, очевидно, на младшего сына кандидатки по имени Trig. Предположения о том, кто стоит за необыкновенно своевременными правками, свелись к двум версиям: Young Trigg является либо сотрудником предвыборного штаба, либо членом семьи кандидатки. Юзер Young Trigg опроверг эти домыслы, объяснив, что в тот день он по совпадению закончил чтение биографии Сары Пэйлин и решил улучшить посвященную ей статью. Верить ли в такие сов падения - каждый решает сам.

Активное использование Википедии в политических и иных интересах - весьма распространенное явление и само по себе уже вряд ли кого-то удивит, а вот выкрутасы американских властей на редкость любопытны. Департамент госбезопасности свое стремление депортировать иностранку, желающую получить в стране убежище, подкрепил почерпнутыми из Википедии сведениями, гласящими, что представленный гостьей дорожный документ, выданный властями Эфиопии, не может являться удостоверением личности, поскольку заполняется со слов владельца. Судья по вопросам иммиграции с этими доводами согласился и отклонил прошение.

Интересные рассуждения приводит госорган, рассматривавший апелляцию. По его мнению, решение не было явной судебной ошибкой: хоть использование Википедии в важных делах и не приветствуется, а само решение судьи "было бы более основательным без ссылки на нее", постановление остается справедливым, поскольку судья учел и другие доводы. Несмотря на это окружной апелляционный суд счел нужным направить дело на пересмотр.

Примечательно, что апелляционный суд в своем заключении приводит выдержки со страниц Википедии, описывающих принципы энциклопедии и содержащих, в частности, упоминания о возможном намеренном искажении материалов. К слову, другое недавнее разбирательство (см. "КТ" #746), в котором судья сделал похожие на правду выводы из вики-статьи, пока в силе. ИК

Быстрее пули

Физикам из Миннесотского университета в Миннеаполисе с помощью компьютерных расчетов удалось объяснить странное поведение наночастиц кремния при ударе о мишень.

Теперь различные наночастицы можно будет эффективно использовать для создания стойких к коррозии, необычайно твердых, водоотталкивающих и других покрытий.

Ученых давно ставило в тупик, что наночастицы из десятков тысяч атомов, летящие со скоростями больше километра в секунду, благополучно прилипают к поверхности, а более медленные отскакивают от нее как мячики, противореча известным моделям взаимодействия частиц с мишенью. Когда обычный макрообъект ударяется о поверхность, он, чтобы прилипнуть, должен как-то израсходовать свою кинетическую энергию. У обычных частиц диссипация лишней энергии происходит за счет смятия и коробления кристаллической структуры, но у наночастиц нет ни времени, ни пространства для подобных изменений.

Дабы понять, что происходит, ученые рассчитали на суперкомпьютере процесс столкновения шара из тридцати тысяч кремниевых атомов с кремниевой мишенью. Модель имела упорядоченную, похожую на алмаз структуру, в которой у каждого атома по четыре соседа.

Если скорость шара не превышала 1,2 км/с, он отскакивал от мишени. Но если скорость при ударе была выше, часть атомов в наночастице претерпевала фазовый переход. То есть кристаллическая структура кремния изменялась на более плотную (в-tin) структуру, в которой у каждого атома уже не четыре, а шесть соседей. Это сначала удивило ученых, поскольку кинетической энергии у наночастицы даже при таких скоростях явно недостаточно для инициации полноценных фазовых переходов. Однако оказалось, что из-за малых размеров частицы в ней в момент удара возникают колоссальные давления - больше двухсот тысяч атмосфер, чего с лихвой хватает для локальных изменений в структуре. Но в таком сжатом упорядоченном состоянии наночастица находится не больше нескольких пикосекунд. Когда она начинает расширяться и отскакивать, происходит еще один фазовый переход, и кремний становится аморфным, с неупорядоченным расположением атомов. Оказывается, такая комбинация двух фазовых переходов и некоторый нагрев полностью поглощают кинетическую энергию частицы, и она прочно прилипает к поверхности, отчасти сохраняя свою форму.

Таким способом можно получать защитные напыления или, наоборот, рыхлые покрытия - например, для химического катализа. Ученые уже запатентовали технологию и уверены, что она будет широко востребована в промышленности. ГА

Квантовый репитер

Физикам из Гейдельбергского университета вместе с коллегами из Китая и Австрии удалось создать прототип репитера для квантовых телекоммуникаций. Это устройство, использующее фотоны для передачи и атомы рубидия для свопа квантовой информации, демонстрирует реализуемость квантовых коммуникаций на большие расстояния.

Как известно, принципиальная невозможность перехвата квантовой информации выводит защищенность сетей передачи данных на качественно новый уровень. В экспериментах квантовую информацию удавалось передавать по оптическим волокнам на расстояние до ста километров, а с помощью хорошего телескопа ее можно отправить даже в космос. Но есть и принципиальные ограничения.

Дело в том, что в оптическом волокне, как и в любой другой среде, отличной от вакуума, часть фотонов неизбежно теряется.

В результате передача информации запутанными фотонами становится невозможной, если вероятность ложного срабатывания детектора будет сопоставима с вероятностью успешной регистрации посланного фотона. Поэтому, чтобы передавать квантовые данные по оптическим волокнам на расстояние значительно больше ста километров, неизбежно придется использовать квантовый аналог репитера.

Но квантовый сигнал нельзя просто скопировать и отправить дальше. Вместо этого канал необходимо разбить на сегменты и запутанность квантовых частиц передавать последовательно из сегмента в сегмент, пока она не достигнет адресата.

Чтобы это реализовать в эксперименте, передача начинается с двух облаков ультрахолодных атомов рубидия, одно из которых работает как отправитель информации, а второе как репитер на пути к получателю. Атомы облаков возбуждаются так, чтобы они испустили навстречу друг другу фотоны, запутанные со своим облаком. Когда фотоны встречаются, их измеряют так, чтобы родительские облака стали запутанными друг с другом. Этот процесс называется свопом квантовой информации. Облака атомов некоторое время остаются стабильны и сохраняют запутанность, что позволяет повторить процедуру с одним из них, то есть запутать первое облако с третьим и так далее вплоть до облака получателя. Расстояние, на которое таким способом можно передать квантовую информацию, ограничено временем стабильности квантового состояния облаков. В первых экспериментах оно не превышало десятка микросекунд, а дальность передачи - трехсот метров. Вероятность успешного запутывания облаков достигала десяти процентов. В следующей серии экспериментов ученые планируют увеличить время стабильного состояния до миллисекунды, а расстояние передачи до ста километров.

Разумеется, эта схема передачи квантовой информации еще далека от практических приложений. Но принципиальных ограничений для увеличения расстояния передачи уже нет, нужно лишь совершенствовать технологию и искать более удобную реализацию кубитов для промежуточного хранения квантовой информации. ГА