Есть еще некоторые не бросающиеся в глаза преимущества зеркалок: например, в них очень просто разместить датчики самой быстрой в настоящее время системы фазового автофокуса (см. врезку), который будет получать просто часть света от зеркала; в незеркальных же камерах пришлось бы придумывать целую систему установки и уборки этой системы в момент съемки. К некоторым преимуществам зеркалок можно отнести и то, что к моменту съемки выключенная до поры матрица оказывается холодной - а значит, в ней меньше шумы и больше реальный динамический диапазон.
Наконец, зеркалки традиционно имеют большие по размеру матрицы: очевидно, что нет никакого смысла городить зеркальную систему на карманных "мыльницах" толщиной с записную книжку. А это влечет за собой множество последствий: кроме всем известной возможности тонкого управления глубиной резкости, больший размер круга четкого изображения, в частности, заставляет делать объективы для таких камер при одинаковой светосиле (то есть, грубо говоря, при одинаковом количестве световой энергии, попадающей на матрицу) больше диаметром. А разве это хорошо, спросите вы?
Действительно, объективы с большим диаметром как минимум должны быть дороже (тяжелее, крупнее); линзы с большей толщиной (особенно стеклянные, а не пластиковые) труднее изготавливать и контролировать в процессе изготовления. Это одна из причин того, что цифромыльницы карманного формата дают в большинстве случаев изображение (за исключением некоторых, видимых только посвященным нюансов), технически ничуть не худшее, чем "полупрофессиональные" камеры, хоть зеркальные, хоть чисто электронные. Но если говорить о тех самых 5% пользователей-перфекционистов, которые хотят выжать из камеры все, что можно, то тут вступает в действие вот какой момент.
Никакое отверстие не может выдать абсолютно резкое изображение за счет дифракции волн на его краях. Чем больше диаметр отверстия, тем меньше сказывается дифракция, и у больших объективов эффект от нее полностью теряется среди других недостатков оптики, хотя бы связанных с задачей развертки сферического изображения, даваемого линзой, на плоскости (например, объективы для среднеформатной пленки, с кадрами 4x6 см, при более-менее доступной цене имеют на краях разрешение вдвое меньше, чем в центре, плюс еще и яркость к краю падает чуть ли не вдвое).
Но для объективов небольшого диаметра это уже не так. Например, для объектива цифромыльницы с фокусным расстоянием 50 мм (для матрицы типоразмера 1/1,8” это стандартный телевик с ЭФР[Эквивалентное фокусное расстояние; равно реальному фокусному расстоянию, умноженному на кроп-фактор.] около 250 мм), имеющего диаметр при полностью открытой диафрагме 5 мм, предельная разрешающая способность (диаметр так называемого диска Эйри, представляющего изображение бесконечно удаленного точечного источника) равна 6 мкм на длине волны зеленого света 500 нм. Из таблицы во врезке следует, что размеры матрицы 1/1,8” составят примерно 7,2х5,3 мм, то есть на ней уместится всего 1200x880 дифракционных кружков, что соответствует, как легко подсчитать, примерно 1 мегапикселу. В реальности для соответствия такому теоретическому разрешению количество пикселов придется удвоить по каждой стороне (чтобы получить точку с промежутком между нею и следующей), но и 4 мегапиксела - тоже далеко от декларируемых разрешений для современных матриц (матрица 1/1,8” - это довольно-таки "продвинутая" мыльница). Положение будет улучшаться по мере перехода к нормальным объективам от телескопических и ухудшаться по мере диафрагмирования объектива (уменьшения отверстия), а также по мере уменьшения размеров матриц и, соответственно, диаметров объективов.
Системы автофокуса
Если объект находится на "бесконечном" удалении от камеры (в реальности, в зависимости от фокусного расстояния и светосилы объектива, а также размеров матрицы, "бесконечное" удаление может означать расстояние от трех-пяти до нескольких десятков метров и далее), то резкое изображение формируется в фокальной плоскости объектива. Как только объект съемки приближается к камере, плоскость резкого изображения тоже сдвигается, и, чтобы она по-прежнему оказалась на светочувствительном элементе, объектив приходится удалять от него. Такое перемещение называют фокусировкой, и в простейших камерах оно осуществлялось вручную, путем визуального совмещения двоящегося изображения в окулярах видоискателей незеркальных механических аппаратов либо путем достижения максимальной резкости на матовом стекле зеркалок (иногда такие камеры дополнительно снабжались системой оптических клинов, подобно оптическим дальномерам). Сейчас с полной уверенностью можно сказать, что ручная фокусировка, которая иногда все же требуется (в темноте, в случае быстродвижущихся предметов и в ряде других ситуаций; с механическими объективами, наконец), эффективно работает только на зеркальных камерах: на незеркальных фокусировка хоть через окуляр, хоть по основному дисплею получается слишком грубой.