Выбрать главу

1

Все эти запутанные процессы приводят к тому, что свет от исследованных пар, подобно свету отсыревшей свечи на ветру, вспыхивает, искрит и брызжет замысловатым и порой хаотичным образом. Причем, несмотря на сходство двух систем, период вращения пары Swift J1753.5-0127 всего 3,2 часа - наименьший среди известных двойных систем с черной дырой. Для сравнения вторая пара оборачивается за 1,7 дня.

К удивлению астрономов, вариации видимого света оказались даже быстрее, чем в рентгеновском диапазоне. Кроме того, изменения яркости в двух диапазонах происходят не одновременно, хотя и следуют определенным повторяющимся закономерностям. Перед рентгеновской вспышкой видимый свет обычно гаснет, потом вспыхивает на доли секунды и вновь быстро затухает. Свет и рентгеновское излучение приходят не из самой черной дыры, а только из ее окрестности.

Результаты наблюдений заставили отказаться от доминирующей сегодня точки зрения, что видимое излучение в системе вторично и возникает в результате разогрева плазмы рентгеном. По-видимому, важную роль в системе играют мощные магнитные поля черной дыры, которые постоянно перестраиваются и участвуют в формировании и изменении яркости источников рентгена и света вблизи черной дыры. Теперь теоретикам предстоит найти объяснение полученным данным. ГА

Искусство забывать

Механизмы работы человеческой памяти пока остаются загадкой. Но ученым удалось сделать очередной шаг на пути к контролю над уникальным хранилищем информации, спроектированным природой. Группа исследователей из США и Китая опубликовала результаты эксперимента, демонстрирующего возможность выборочного удаления воспоминаний - правда, пока только у мышей.

Главным "инструментом" в работе, выполненной под руководством Джо Циня (Joe Tsien), стал белок альфа-CaMKII. Этот фермент, иногда называемый "молекулой памяти", играет важную роль в работе головного мозга. Прибегнув к методам генной инженерии, группа Циня вывела мышей, мозг которых усиленно вырабатывает этот энзим. Сначала генетически модифицированным грызунам искусственно снижали концентрацию фермента до нормальной. Воспоминание, которое предстояло забыть, сформировали просто: особь помещали в специальную камеру, после чего лапы животного подвергались легкому удару током. Обработанная таким образом мышь, снова попав в "пыточную", замирала в ожидании болевого шока.

Затем исследователи временно прекращали давать подопытным грызунам ингибитор, подавляющий выработку альфа-CaMKII, из-за чего концентрация фермента в мозге особи поднималась выше нормы. Если после этого мышь вновь помещали в камеру, случалась удивительная метаморфоза: животное вело себя как ни в чем не бывало. Судя по тому, что и спустя две недели поведение мышей не менялось, память о неприятном событии стиралась безвозвратно, а не просто ослаблялась. Важно, что прочие воспоминания при этом оставались незатронутыми.

Экспериментаторы пока затрудняются объяснить, как именно очищается нужный участок памяти. Предположительно фермент ослабляет ряд нейронных связей при попытке вызвать ассоциированное с ними воспоминание. Исследователи честно предупреждают, что механизм "чистки" в том виде, в каком его испытывали на мышах, к человеку неприменим, поскольку требует вторжения в генетический код, а также из-за более сложного устройства головного мозга человека. Тем не менее полученный результат безусловно ценен для науки, так как проливает свет на принципы функционирования памяти у живых существ. И не исключено, что в один прекрасный день в аптеках появятся пилюли, помогающие навсегда избавиться от неприятных воспоминаний. Например, жертвам катастроф, пережившим сильнейшее потрясение, такое лекарство могло бы заметно облегчить жизнь. ЕЗ

Летающие линзы

Оригинальную технологию, обещающую продлить жизнь традиционной фотолитографии, предложили ученые из Калифорнийского университета в Беркли. Помимо изготовления чипов, ее можно использовать для записи информации с плотностью на порядок большей, чем у современных винчестеров.

Как известно, главным препятствием на пути дальнейшей миниатюризации компьютерных чипов является дифракционный предел, мешающий сфокусировать свет в пятнышко меньше половины длины волны. Он и определяет возможности технологического процесса, ограниченные сегодня 35 нанометрами. Ученые давно научились обходить дифракционный предел, используя так называемые нераспространяющиеся электромагнитные волны, быстро затухающие на расстоянии меньше длины волны от конца световода, плазмонного аналога оптической линзы или другого устройства, позволяющего их сфокусировать. Таким устройством может служить даже несколько щелей специальной формы в тонком слое хорошего проводника.