Пойти на это Кнута заставили мошенники, не раз пытавшиеся опустошить его банковские счета посредством тех самых наградных чеков. Создатель систем TeX и METAFONT далек от мысли, что в этом замешаны его читатели: но, по его мнению, роль сыграло то, что чеки часто выставлялись напоказ. Номера, напечатанные на бланках, мошенники могли использовать для незаконного получения денег. По признанию самого Дональда, за последнее время в результате подобных действий он был вынужден закрыть уже три чековых счета.
Впрочем, и из этой ситуации автор "Искусства программирования" вышел с улыбкой. Отныне читателей, отыскавших ошибку, будет ждать "почет, а не расчет" (в оригинале "kudos, not escudos"). Вместо чеков Кнут будет рассылать собственноручно подписанные депозитарные сертификаты на ту же сумму в организованном им воображаемом банке страны San Serriffe, квартирующем на планете Пинкус (государство San Serriffe появилось в результате первоапрельской шутки британской газеты Guardian в 1977 году). Также почетный список получателей, обновляемый лично Кнутом, размещен в его разделе на сайте Стэнфордского университета. По словам ученого, переход к виртуальным наградам вряд ли кого-то огорчит, поскольку за последние пару лет лишь девять человек решили обналичить полученные чеки.
Перенесший в 2006 году операцию по удалению злокачественной опухоли, Кнут продолжает читать лекции, писать книги и развивать проекты TeX и METAFONT, а значит, прием багов продолжается. ЕЗ
Важного успеха в разработке компонентов квантовых компьютеров добилась команда физиков из университетов Оксфорда, Принстона и Беркли. Ученые научились записывать, хранить и считывать квантовую информацию с помощью единственного атома фосфора-31.
Квантовый компьютер, как и обычный, должен уметь не только обрабатывать, но и хранить данные. И если для обработки информации могут подойти электроны, способные кодировать единицу квантовой информации (кубит) в состоянии своего спина, то для ее хранения электроны приспособлены плохо. Легкий электрон сравнительно быстро "забывает" квантовое состояние своего спина, поскольку сильно реагирует на тепловые колебания окружающих электромагнитных полей. Хранить квантовую информацию лучше в спинах сравнительно тяжелых и неповоротливых атомных ядер, которые вдобавок хорошо экранированы от окружения своими электронными оболочками. А значит, надо научиться передавать квантовое состояние спина электрона спину ядра, а затем, при необходимости, считывать его.
Оказалось, что для этого прекрасно подходят атомы стабильного изотопа фосфора-31, введенные в качестве примесей в идеальный кристалл изотопа кремния-28. Обычный химически чистый кремний, использующийся в полупроводниковой промышленности, кроме основного изотопа кремния-28 содержит еще почти пять процентов кремния-29, а также кремний-30. У ядер кремния-28 спин нулевой, и они не мешают фосфору, но спин ядер кремния-29 уже не нулевой, так что он неизбежно взаимодействует со спином ядер фосфора, способствуя его разрушению. Поэтому ученым пришлось потратить массу усилий, чтобы получить изотопически чистые монокристаллы кремния-28.
У фосфора на один электрон больше, чем у кремния, и его спин связан со спином ядра. С помощью пары импульсов, лежащих в радио- и микроволновом диапазоне частот, удалось переписать квантовое состояние спина электрона фосфора в состояние спина его ядра. Те же импульсы в обратной последовательности считывали состояние ядра, передавая его в квантовое состояние электрона. Вероятность успеха операций записи-чтения достигала 90%, что очень неплохо для опытов подобного рода. Но самое замечательное, что при температуре 5,5° выше абсолютного нуля кубит мог сохраняться ядром фосфора до двух секунд, а это в тысячи раз дольше, чем в самой лучшей квантовой памяти, созданной до сих пор.