FED и SED - свет в конце туннеля?
Технология Field Emisson Display (FED) есть развитие идеи плоского кинескопа [Плоского не в смысле плоскоэкранного (это научились делать и без того), а в смысле тонкого, плоскопанельного, как плазма или ЖК], которой инженеры озаботились еще в 1980-е годы. Один из вариантов этой технологии от Candescent Technologies так и назывался - ThinCRT. Самым большим ее энтузиастом выступала Canon, которая занялась этим вопросом еще в 1986 году и даже дала своей версии специальное название: SED (Surface conduction Electron-emitter Display). В 2004-м Canon купила упомянутую Candescent Technologies и объединилась с Toshiba для организации производства, начать которое собирались в 2005 году. В начале 2007-го Canon выкупила у Toshiba долю в этом предприятии обратно и хотя продолжала всячески демонстрировать оптимизм (обещая, в частности, начать производство SED-дисплеев теперь уже в конце 2007-го), но на этом дело опять заглохло.
Суть технологии FED/SED очень проста и заключается в формулировке "каждому пикселу экрана по собственной электронной пушке". Конечно, подогревный катод (каковые используются в обычных кинескопах) столь микроскопических размеров не сделаешь, поэтому в основе всех разработок в этом направлении лежит идея использования автоэлектронной эмиссии. Это явление состоит в том, что пленка полупроводника под действием разности потенциалов может испускать электроны за счет туннельного эффекта. Чтобы туннельный эффект работал, нужны микроскопические зазоры (вернее сказать - "наноскопические"). Для этого в ячейках SED разработчики прорезали в пленке полупроводника сверхтонкие (несколько нанометров) щели. Образующиеся электроны ускоряются разностью потенциалов. В кинескопе это делается, как известно, за счет сверхвысокого (десятки киловольт) напряжения между анодом и электронной пушкой-катодом, а здесь, вследствие небольшого расстояния, достаточно лишь нескольких вольт. Ускоренные электроны попадают на люминофор и заставляют его светиться.
В FED-дисплее анод представляет собой алюминиевую пластину, покрытую люминофором, а прозрачный катод-эмиттер, излучающий электроны, находится на стеклянной пластине сверху. Одной из самых больших трудностей было обеспечение глубокого вакуума в ячейке - ведь стекло обычного кинескопа делают очень толстым, чтобы противостоять внешнему давлению.
Motorola разрабатывает иной вариант FED под названием NED, в котором излучателями электронов будут нанотрубки. А в конце ноября вдруг пришла новость из неожиданного источника - Sony. Оказывается, знаменитая корпорация совместно с компанией FE Technologies тихой сапой разрабатывала свой вариант FED-технологии и сейчас вынесла свое творение на публику.
В варианте FED от Sony эмиттеры электронов представляют собой конусы "наноскопических" размеров, на каждый субпиксел их приходится до 10 тысяч. Sony уверяет, что выход из строя 20% этих излучателей не влияет на качество картинки. Творение оказалось впечатляющим: 19-дюймовый дисплей с частотой обновления картинки 240 Гц, который на презентации обслуживали четыре (!) приставки PlayStation 3. Очевидцы говорят, что качество картинки ошеломляющее.
Бумага или чернила?
Простейшая технология электронной бумаги, разработанная еще в 1998 году группой исследователей из Массачусетского технологического института (позже основавших компанию E Ink), заключается в следующем. В прозрачной пластиковой основе заключено множество микроскопических капсул с жидкостью, в которой плавают мельчайшие полиэтиленовые шарики. Половина из них белого цвета, половина - черного, а плотность жидкости подобрана так, чтобы шарики в ней не всплывали и не тонули. Электрические свойства черных и белых частиц различаются за счет подбора наполнителей, поэтому в электрическом поле они начинают двигаться в разные стороны (явление электрофореза). При подаче напряжения одного знака всплывают белые частицы, при подаче противоположного - черные. Причем при снятии напряжения текущее состояние может сохраняться годами - энергия тратится только на формирование изображения.