Выбрать главу
Векторные плазмиды

Теперь в нашей пробирке плавает не меньше миллиона копий гена зеленого флуоресцентного белка. Однако в том же растворе находятся еще миллиарды копий других молекул ДНК, и нам надо как-то «отделить зерна от плевел». Мы уже знаем, что физико-химические методы здесь не годятся: разные молекулы ДНК слишком похожи друг на друга. Для поиска гена зеленого флуоресцентного белка мы воспользуемся главным свойством именно этого белка — флуоресценцией.

Все имеющиеся в растворе гены коралла мы введем в бактерии так, чтобы каждая из них получила один ген. Бактерии в норме «не умеют» флуоресцировать — если мы найдем флуоресцентную бактерию, значит, внутри нее работает (экспрессируется) ген флуоресцентного белка из коралла. Молекулярные биологи часто используют в своих целях лабораторные штаммы кишечной палочки E. coli (эти бактерии относительно безопасны для человека, какое-то их количество всегда присутствует в нашем кишечнике).

Отличительной чертой бактерий является то, что часть генетической информации у них содержится в коротких кольцевых молекулах ДНК — плазмидах. Многие биотехнологические компании торгуют очищенными плазмидами (векторами), специально предназначенными для решения разных молекулярно-технологических задач. Нам необходимо купить или попросить у знакомых биологов вектор для экспрессии чужеродных генов в бактериях, вставить в него нашу кДНК и перенести полученную конструкцию в бактерию.

Рестриктаза

Чтобы все это сделать, мы должны сначала разрезать кольцевую молекулу ДНК вектора. Для этого используются специальные ферменты — рестриктазы, сама реакция называется рестрикцией. В природе рестриктазы используются бактериями для защиты от чужеродной ДНК; генному инженеру набор рестриктаз, хранящийся в морозильнике, столь же необходим, как ножницы портному. Рестриктазы узнают и разрезают строго определенные нуклеотидные последовательности, которые называются сайтами рестрикции. Для каждой рестриктазы есть свой сайт узнавания ДНК, обычно включающий в себя от четырех до восьми расположенных подряд нуклеотидов. Вектора, предназначенные для клонирования, содержат специальный полилинкер — десяток идущих друг за другом разных сайтов рестрикции, перед которым находится промотор — последовательность нуклеотидов, с которой бактерии начинают считывать РНК любого гена.

Молекулярный ОТК

«Технический контроль» и отбраковку неправильно изготовленных белковых молекул осуществляют опять-таки белки. Обнаруживает дефектные молекулы белок паркин, который «навешивает» на них специальные «бирки» — что-то вроде табличек «Брак!». Эти «бирки» — цепочки молекул убиквитина, прикрепленные к «неисправным» белкам, — являются инициаторами начала работы белковых структур под названием протеосомы.

Протеосомы выполняют функции «баз разделки» (такие существуют на флоте и в авиации), где разбирают на запчасти и режут на металлолом отслужившие свой срок корабли и самолеты. Аналогично «поступают» и протеосомы. Помеченные убиквитином белковые молекулы они «разбирают на запчасти» — деструктурируют до отдельных аминокислот, которые могут быть вновь использованы для «производства» любых других белковых молекул.

Лигаза

Добавим к выбранному нами вектору рестриктазу и подходящий для ее работы солевой раствор (он прилагается к купленному ферменту) и поставим пробирку в термостат, разогретый до 37 °С. Через час все кольцевые молекулы вектора в растворе станут линейными — рестриктаза нашла свой сайт на полилинкере и разрезала в этом месте ДНК. Теперь смешаем разрезанный вектор и кДНК и добавим новый фермент — лигазу. Если рестриктаза играет в нашей работе роль ножниц, то лигаза, наоборот, является иголкой, сшивающей две молекулы ДНК. Спустя несколько часов все молекулы вектора снова станут кольцевыми, но теперь внутри полилинкера в каждой из них будет содержатся по одной молекуле кДНК. Правда, некоторые молекулы вектора «зашились» обратно сами на себя — для борьбы с этим явлением существуют специальные способы, но мы сейчас обойдемся без них, просто возьмем в следующую стадию побольше ДНК и будем надеяться на лучшее.

Ампициллин

Мы достигли кульминационной части первого этапа работы — в нашей пробирке находится смесь молекул кДНК коралла, среди которых и ген зеленого флуоресцентного белка. Осталось поместить все эти молекулы в бактерии (такая процедура называется трансформацией) и посмотреть, что получится.

Технически трансформация E. coli производится очень легко. Достаточно смешать бактерии и вектор, добавить немного солей кальция и пропустить через смесь короткий импульс электрического тока. Некоторые бактерии при этом погибают, с другими ничего не происходит, но многие почему-то «всасывают» в себя ДНК вектора. Почему так происходит, никто не знает, тем не менее все генные инженеры пользуются этим странным свойством E. coli.

Возьмем стерильный стеклянный шпатель и вотрем трансформированные бактерии в плоские чашки, содержащие питательную среду и антибиотик ампициллин. Используемый нами вектор содержит ген устойчивости к ампициллину, кодирующий специальный фермент, который успевает разрушить молекулы антибиотика до того, как антибиотик убьет бактерию. Таким образом, на нашей питательной среде выживут только бактерии, «проглотившие» вектор, все нетрансформированные бактерии погибнут. Поставим чашки с бактериями на ночь в теплое место, пусть подрастут.

На следующее утро внимательно рассмотрим содержимое чашек. На агаровом геле видны бляшки диаметром около полумиллиметра — это колонии бактерий. Каждая колония является потомством одной единственной трансформированной бактерии, попавшей вчера в чашку, соответственно все бактерии внутри одной колонии содержат один и тот же вектор. Берем синюю лампочку (а еще лучше — ставим чашку под флуоресцентный микроскоп) и начинаем искать.

Нам придется исследовать около сотни тысяч бактериальных колоний (не волнуйтесь, это всего несколько десятисантиметровых чашек). Почти все колонии оказались неокрашенными, но вот смотрите — одна колония ярко светится зеленым светом! Нам повезло, мы нашли бактерии, трансформированные вектором с геном зеленого флуоресцентного белка. Вполне возможно, что мы обнаружим еще несколько таких колоний, некоторые из них будут светиться не зеленым, а желтым или красным светом — значит, там экспрессируются желтый или красный флуоресцентный белок, это уже не важно. Берем деревянную зубочистку и аккуратно дотрагиваемся кончиком до светящейся колонии. Теперь кидаем зубочистку в колбу с питательной средой — нам надо много бактерий, чтобы выделить из них вектор.

…и снова центрифуга

На следующее утро питательная среда в колбе стала мутной — это размножились попавшие туда бактерии. Все они содержат нужный нам ген, осталось только выделить из них ДНК, чтобы перенести этот ген в мышь. Как выделить ДНК из бактерий, мы уже примерно представляем — методика очень похожа на выделение РНК из коралла, только содержит меньше стадий. Прокрутим среду с бактериями на центрифуге, к осадку добавим немного щелочи и соли SDS (это основной компонент мыла и стиральных порошков), чтобы разрушить клеточные стенки бактерий. Центрифугируем, избавляемся от нерастворенных остатков бактерий, из полученного чистого раствора осаждаем ДНК путем добавления спирта и ацетата натрия и растворяем ее в воде.