Выбрать главу

Второе направление - ячейку усложнили, пристроив к ней второй транзистор, который разделил вывод стока и считывающую шину всей микросхемы. Благодаря этим мерам удалось значительно повысить долговечность чипа - до сотен тысяч, а в настоящее время и до миллионов[Правда, при условии использования схем коррекции ошибок.] циклов записи/стирания. Кроме того, схемы формирования высокого напряжения и соответствующие генераторы импульсов записи/стирания перенесли внутрь микросхемы, отчего пользоваться этими типами памяти стало несравненно удобнее - теперь они питались от одного напряжения (5 или 3,3 В).

И наконец, третье, чуть ли не самое главное усовершенствование заключалось в изменении организации доступа к ячейкам на кристалле, вследствие чего этот тип памяти и заслужил наименование flash, то есть "молния".

Flash - значит быстрый

Обновление информации в микросхемах EEPROM - страшно медленный процесс. Во-первых, каждую ячейку требуется сначала стереть - ведь запись, то есть помещение на плавающий затвор зарядов, лишь приводит ее в состояние "логического 0", а восстанавливать "логическую 1" приходится отдельно. Во-вторых, из-за большого потребления тока в процессе "горячей инжекции" каждую ячейку приходится записывать фактически отдельно, а так как этот процесс занимал миллисекунды, то для перезаписи даже сравнительно небольших массивов требовались уже секунды.

Разработчики во главе с упомянутым Фуджио Масуокой решили, что раз потребление при записи удалось снизить, то можно записывать ячейки не индивидуально, а целыми блоками - и тем быстрее, чем крупнее блок. В этой схеме некий массив данных готовится заранее (помещается в специальный временный буфер SRAM, который обычно имеется на том же кристалле, что и основная память), затем все нужные ячейки разом стираются, и разом же в них записывается информация из буфера. Недостатком этого метода стала необходимость перезаписи целого блока, даже если нужно изменить только один бит в одной-единственной ячейке. Но на практике это не вырастает в проблему - основные задачи, которые выполняет энергонезависимая память в современном мире, как раз и заключаются в записи сразу огромных массивов потоковым методом. Вот такая разновидность EEPROM и получила название "flash" - за многократно выросшую скорость записи информации, которая стала сравнима со скоростью чтения.

NAND и NOR

NAND и NOR - англоязычный эквивалент логических функций "И-НЕ" и "ИЛИ-НЕ". Пришедшие из схемотехники, эти термины описывают два разных принципа логического соединения ячеек - отсюда существенная разница и в устройстве, и в функционировании модулей памяти. Первая микросхема flash-памяти, выведенная на рынок компанией Intel в 1988 году (емкостью 32 Кбайт, примерно по $20 за штуку), имела организацию NOR (рис. 4 слева). Все ранние типы EPROM тоже имели подобную структуру. Здесь все просто, как и в DRAM: ячейки в строках матрицы соединены управляющими затворами ("линии слов"), а в столбцах - считывающими линиями, которые здесь носят наименование "линии бит".

В 1989 году Toshiba вывела на рынок первую flash-память NAND-разновидности. Ее структура показана на рис. 4 справа и, как видите, значительно отличается от NOR. Ячейки здесь хоть и содержат все тот же транзистор с плавающим затвором, построены иначе. С точки зрения производства, NAND проще и занимает заметно меньше места, чем NOR. Транзисторов-ячеек в каждой конструкции NAND может быть от 16 до 32 штук, но обычно их объединяют в блоки по 256 или 512 байт, которые читаются и записываются только целиком (512 байт - обычная величина сектора на жестком диске). Иногда блоки имеют нестандартную емкость - например, 264 байта ("лишние" 8 байт могут использоваться для хранения контрольной суммы, с целью повышения надежности операций чтения). Блоки могут объединяться и в большие образования - страницы.

Все это сразу указывает на основное назначение NAND-технологии - для построения систем хранения файлов. В последнее время даже Intel, стойко придерживавшаяся линии на усовершенствование NOR-разновидности, сдалась и совместно с Micron занялась разработкой карт на основе NAND-чипов. NAND сейчас доминирует в области скоростных и емких карт памяти, но и NOR в некоторых областях живет и здравствует (она незаменима, если требуется быстрое выборочное чтение, а акты перезаписи сравнительно редки - во flash-BIOS, SIM-картах, встроенной памяти программ микроконтроллеров и тому подобных применениях).

Дальше, выше, быстрее

Со времен Фуджио Масуоки принципиальная придумка в области технологий была только одна: разработчики воспользовались тем, что в ячейке информация хранится, по сути, в аналоговой форме - в виде некоторого количества электронов (кстати, всего лишь около тысячи штук). Если поделить это количество на несколько градаций и строго дозировать электроны при записи, то в одной ячейке можно хранить не один, как в классической схеме, а сразу много бит информации. Так появились многоуровневые ячейки (multi-level cells, MLC). И хотя схемотехника и изготовление такой flash-памяти гораздо сложнее, но выигрыш очевиден - плотность упаковки возрастает многократно. Кроме того, можно применить так называемую многочиповую упаковку (multi-chip packages, MCP), в чем особенно преуспела Samsung.