Выбрать главу

Резистивный сенсорный экран состоит из стеклянной или акриловой пластины, укрытой двумя токопроводящими пленками. Пленки отделены друг от друга специальными изоляторами, которые не дают им соприкасаться по собственному желанию. А вот если нажать на экран стилусом или пальцем, то они сблизятся в определенном месте, контроллер дисплея "засечет" электрический сигнал, выработанный соприкоснувшимися проводниками, и зафиксирует координаты касания.

Для управления пальцами эта технология подходит не лучшим образом: здесь важна высокая точность нажатия, обеспечить которую способен лишь стилус. С другой стороны, после некоторой тренировки можно дать перышку отдых и нажимать на виртуальные кнопки руками — именно так я и "руководил" своими Sony Ericsson P1i и Cowon iAudio D2 (правда, вместо желаемых пунктов меню нередко открывались соседние). Кто-то пытается пойти другим путем — к примеру, компания HTC взяла и переписала стандартный драйвер ОС Windows Mobile, отвечающий за обработку нажатий на дисплей, и теперь модели Touch-серии неплохо управляются пальцами, но для набора текста стилусом необходимо сильно нажимать на экран, к тому же есть шанс не попасть в нужную букву.

Каковы недостатки резистивной технологии? Во-первых, покрытие дисплея должно быть гибким — следовательно, приходится применять различные пластики, которые не так надежны, как, допустим, стекло. Во-вторых, яркость резистивного экрана далека от идеала — коэффициент пропускания светового потока составляет всего 75-80%.

В-третьих, со временем токопроводящие пленки мутнеют и покрываются микротрещинами, что снижает точность определения координат касания.

Преимущества ёмкостных дисплеев заключаются в следующем: для пущей надежности их можно укрывать твердыми негнущимися материалами, у них все в порядке с долговечностью и яркостью (коэффициент пропускания светового потока превышает 90%), отсутствует сетка изоляторов — некоторых особо придирчивых пользователей она, не поверите, раздражает — мол, на солнце сильно заметна и мешает восприятию картинки. Кроме того, такие экраны выдерживают от 100 до 200 млн.

нажатий и вполне сносно работают при низких температурах — до минус 15 градусов по Цельсию (для сравнения: сбои в работе резистивных дисплеев начинаются уже при нулевой температуре).

Принцип работы ёмкостных дисплеев основан на том, что человеческое тело проводит ток. По умолчанию экран обладает электрическим зарядом, а после касания пальцем (или специальным токопроводящим стилусом, как в случае LG Viewty) часть заряда притягивается к месту нажатия. Расположенные по углам экрана датчики фиксируют скопление электронов, а микроконтроллер определяет координаты точки касания. Типичный пример: Samsung P520 Armani отлично управляется голыми пальцами и стилусом от LG Viewty, а вот на руку в перчатке или перо от любого Windows Mobile-коммуникатора не реагирует. В этом, собственно, и заключается самая неприятная особенность ёмкостной технологии — она не оставляет нам выбора. Кому захочется лишний раз снимать перчатку в 15 градусный мороз, чтобы, скажем, переключить песню на устройстве, которое — вот умница! — не подводит даже при столь низкой температуре?

Применение инфракрасных сенсоров рассмотрим на примере мобильника N2 шведской фирмы Neonode. Фактически здесь применяется самый обыкновенный несенсорный экран с разрешением 176х220 точек, зато вокруг него расположена рамка с инфракрасными датчиками, генерирующими лучи, 8 по горизонтали и 9 по вертикали: получается эдакая сетка, целостность которой после прикосновения пальцем к поверхности нарушается, в результате чего и вычисляется место нажатия.

Работает эта система вполне сносно;правда, в мобильном телефоне она не очень удобна — к примеру, чтобы избежать случайных нажатий, при разговоре N2 приходится поворачивать к щеке тыльной стороной. Неудивительно, что в гаджетах такие сенсорные (или все же псевдосенсорные?) дисплеи практически не применяются. Зато в промышленности или медицине — еще как, поскольку инфракрасные сенсоры могут обслуживать огромные экраны, за которые не "берутся" ни ёмкостная, ни ре зис тивная технологии.

В современном "мобильном мире" производителям приходится не просто выбирать, какой сенсорный экран установить в то или иное устройство, а исходить из возможностей его интерфейса: если устройство базируется на Symbian или Windows — придется использовать резистивные матрицы, а если в его основе лежит должным образом оптимизированная и рассчитанная на управление пальцами проприетарная ОС — можно остановиться и на ярком ёмкостном экране.

И пока гаджеты будут условно делиться на "рабочие лошадки" и "мультимедийные комбайны", оба типа сенсорных матриц будут мирно сосуществовать делить им уж точно нечего