Выбрать главу

Вариант 7, задача 12

Все кукурузные хлопья — лошади. Все кукурузные хлопья носят красные пуговицы и иногда играют в бинго. Пшеничные лепешки иногда играют в бинго. Алмазы — пшеничные лепешки, следовательно, алмазы и лошади иногда играют в бинго.[All cornflakes are horses. All cornflakes have red buttons and sometimes play bingo. Scones sometimes play bingo. Diamonds are scones, therefore horses and diamonds sometimes play bingo.]

Авторский ответ: верно.

Условие задачи можно понимать тремя разными способами (что само по себе является существенным недостатком), так как высказывание "алмазы и лошади иногда играют в бинго" допускает три различных интерпретации. Во всех трех случаях авторский ответ ошибочен.

Первое понимание: каждый алмаз и каждая лошадь иногда играет в бинго. В этом случае авторский ответ ошибочен по той же причине, что и в предыдущей задаче: невозможно сделать достоверное утверждение обо всех лошадях, имея информацию только о тех из них, которые одновременно являются кукурузными хлопьями (см. диаграмму).

Второе понимание: бывают моменты времени, когда какие-то алмазы и какие-то лошади играют в бинго. В этом случае ответ очевидно неверен, потому что нигде в условии ничего не сказано о том, кто с кем играет одновременно.

Наконец, третье понимание: бывают моменты, когда какие-то алмазы играют в бинго, и бывают (быть может, другие) моменты, когда какие-то лошади играют в бинго. Но тогда в таком же смысле надо понимать условие "пшеничные лепешки иногда играют в бинго": бывают моменты, когда какие-то лепешки играют в бинго. При этом не исключено, что это случается только с теми лепешками, которые не являются алмазами, следовательно, авторский ответ снова неверен.

Вариант 7, задача 40

Некоторые открытки — белые медведи, а некоторые моечные машины часто чихают; кроме того, дикобразы говорят по-китайски, а все те, кто говорит по-китайски, часто чихают. Но ни один белый медведь часто не чихает. Некоторые моечные машины говорят покитайски, а все открытки — моечные машины. Следовательно, некоторые открытки говорят по-китайски.[Some postcards are polar bears, and some washing machines sneeze a lot; also hedgehogs speak Chinese, and all that speak Chinese sneeze a lot. But no polar bears sneeze a lot. Some washing machines speak Chinese and all postcards are washing machines. Therefore some postcards speak Chinese.]

Авторский ответ: истинно.

Это заключение ошибочно в силу следующего примера. Допустим, что а) множества открыток и белых медведей совпадают между собой, б) множества дикобразов, чихателей и знатоков китайского языка тоже совпадают между собой, в) множество моечных машин является объединением множеств а) и б), причем два последних множества не имеют общих элементов. Тогда все условия задачи выполнены, а заключение — нет.

Столь же неверно решены задачи 2:39, 3:26 и 6:11. Итого, автор правильно решил не более пяти из шестнадцати своих собственных логических задач и еще в трех дал правильный ответ на основании неправильного рассуждения.

Согласно таблице, приведенной в [1] на стр. 207, такой процент правильных решений (5/16 = 12,5/40) дает значение IQ, равное примерно 106. Согласно разъяснению на стр. 14 в [2], это несколько ближе к уровню квалифицированных работников (109 баллов), чем слабо квалифицированных (98 баллов); впрочем, поскольку выше "квалифицированных работников" там указаны еще три ступени развития, в том числе "высококвалифицированные, канцелярские работники" (117 баллов), к должности клерка человека с таким показателем подпускать все же нельзя. С другой стороны, среди сорока задач (из которых надо набрать двенадцать с половиной) немногие требуют выбора ответа — да и те, как правило, не из двух, а из шести вариантов. В то же время в логических задачах достаточно лишь угадать один ответ из двух. Для того чтобы в среднем дать восемь правильных ответов на шестнадцать вопросов типа да/нет, можно вообще ни о чем не думать, а произвольно расставлять ответы.

Однако человек, поступивший так со всеми сорока задачами в каждом из данных тестов, в среднем наберет лишь три и одну треть балла. В силу упомянутых таблиц, этот результат соответствует и вовсе "неквалифицированным работникам" с IQ примерно 90,6. Впрочем, это все же гораздо лучше уровня "бродяг, поденных рабочих" и "пациентов психиатрических клиник", для которых характерны значения IQ, равные 82 и 57, заработать которые, согласно недвусмысленно сформулированным в этих книгах правилам интерпретации и экстраполяции данных таблиц, можно лишь дав неправильные ответы соответственно на 42 и 57 из сорока вопросов теста.

Спору нет: прочие, более стандартные для этого жанра задачи решены авторами в основном лучше. (См., однако, следующий раздел.) Тем не менее смешно оценивать человека с помощью задач, с которыми он непрерывно работает уже десятки лет. Количество ошибок, которые он сделает, попробовав выйти за пределы обычного круга, несравненно более показательно. Беда в том, что в данном случае речь идет не об оценке авторов теста — наоборот, оценивают они, и засчитывается в этой их оценке не правильное решение, а совпадающее с авторским. В частности, человеку, правильно решившему все эти задачи, было бы зачтено только восемь ответов из шестнадцати (из них три — благодаря случайному совпадению), что соответствует 118 баллам (начисляемым за двадцать правильных ответов из сорока), то есть почти точно уровню канцелярского работника.

Наверное, в этом и состоит сермяжная правда кадровой политики эпохи постмодерна: ведь проклятых зануд, умеющих отличать верное рассуждение от неверного, и близко нельзя подпускать к группе "административных и руководящих работников", для которой характерен показатель около 153 баллов IQ. Столько баллов можно заработать, лишь ответив на все задачи точно так же, как авторы этого теста (по-видимому, относящие себя к той же группе).

"Геометрия"

Еще один важнейший компонент интеллекта — пространственное, геометрическое воображение. Вероятно, поэтому в каждый из тестов этой книги включено по две задачи на вращение игрального кубика. Вот первая из таких задач, приведенная в качестве образца еще в подготовительном разделе.

Задача 16

На каждой грани куба — своя уникальная фигура (см. рис.). Мысленно вращая два куба, определите, одинаковые они или разные?

Прежде всего, этот вопрос некорректен по самой своей постановке, поскольку, глядя только на три грани, никогда нельзя с уверенностью утверждать, что кубики одинаковые: может быть, невидимые грани все портят. Поэтому единственно корректный вопрос состоит в том, может ли быть, что эти кубики одинаковые, а корректный ответ на приведенный выше вопрос — либо "нет", либо "данных недостаточно".

Однако в данном случае все еще хуже. Авторский ответ: одинаковые. Этот ответ очевидно неверен. Действительно, острие "сердечка"в одном случае направлено к середине одного из ребер, ограничивающих соответствующую грань куба, а в другом — в угол этой грани.

Вариант 2, задача 27 (вопрос тот же самый, см. рис.)

Авторский ответ: одинаковые.

Этот ответ очевидно ошибочен. Действительно, в обоих случаях только два ребра, ограничивающих грань со звездочкой, параллельны тем или иным отрезкам этой звездочки. Эти два ребра неравноправны: лишь из одного из них видны точки этих отрезков звездочки. Поэтому не существует никакого нетривиального вращения левого кубика, превращающего его в правый и переводящего звездочку точно в себя.

Вариант 6, задача 24

Авторский ответ: одинаковые.

Этот ответ очевидно неверен. Действительно, единственное движение, совмещающее левый кубик с правым, которое могло бы перевести грань с ромбом в грань с ромбом, а грань с двойной окружностью в грань с двойной окружностью, должно было бы перевести диагональ верхней грани, содержащую длинную диагональ ромба, в диагональ, содержащую короткую.