V80 достигала скорости подводного хода в 28,1 узла — при том, что лодки того времени развивали под электромоторами максимум десяток узлов. Однако рекордные характеристики обеспечивались высоким расходом перекиси в турбинах. Для боевого применения были созданы субмарины "тип XVIIB". Наряду с пероксидными турбинами полного хода они оснащались и обычными дизелями.
В главных двигателях кораблей перекись водорода, несмотря на послевоенные опыты британцев с высокоскоростными лодками HMS Explorer и HMS Еxcalibur, не прижилась, но прочно обосновалась в торпедах. А германские инженеры, создавая "тип 212", добивались прежде всего не максимизации хода, но минимизации шумов и пользовались совсем другой, электрохимической, технологией — топливными элементами.
Описанные в 1839 году английским юристом и химикомлюбителем Уильямом Гроувом, эти устройства, получавшие электроэнергию из кислорода и водорода, были высоко оценены отцом электрохимии Вильгельмом Оствальдом, полагавшим в 1894 году, что именно его отрасль знания найдет способ получения больших количеств дешевой энергии, скажем, окислением угля кислородом воздуха в топливных элементах. Пока мы весьма далеки от появления таких технологий, хотя в развитии топливных элементов и произошел скачок в начале 1960-х годов, когда США в рамках космической программы тратили на исследования в этой области десятки миллионов долларов. В результате были созданы пригодные для практического употребления топливные элементы, работавшие, как некогда у Гроува, на кислороде и водороде.
(Впрочем, именно эти газы служили топливом для ракет Saturn.Они обеспечивали астронавтов, летавших на Gemini и Apollo, не только электричеством, но и водой — где-то фунт на каждый выработанный кВт-час. Водичка, правда, была насыщена водородом, что вызывало в организме специфические физиологические явления.[В отличие от любимой на российских полигонах охлажденной кислородом воды, которая благотворно действует на организм, особенно после другого любимого ракетчиками напитка])
Вот такие, водородно-кис лород ные топливные элементы, с разработанной фирмой Siemens протонообменной мембраной, и установили германские инженеры на лодки "тип 212". На головной корабль U31 — девять элементов по 30-40 кВт каждый; на последующих U32, U33, U34 — пару топливных элементов по 120 кВт. Они приводят в действие синхронный электродвигатель на постоянных магнитах Permasyn фирмы Siemens мощностью 1700 кВт, крутящий семилопастной винт. Полный ход в подводном положении, достигающий 20 узлов, как мы видим из соотношения мощностей, может быть дан только под аккумуляторами, подобно тому, как аккумуляторы обеспечивают разгон некоторых гибридных автомобилей. Есть и 16-цилиндровый дизель — он обеспечивает 12-узловой надводный ход и зарядку аккумуляторов. Ну а топливные элементы служат для длительного, до трех недель, малошумного подводного хода.
Безусловно, конструкция лодок "тип 212" порождает ряд вопросов. Даже кислород вызывает горение в своей атмосфере железа, являющегося важнейшим конструкционным материалом.[Вспомним гибель экипажа Apollo 1, сговевшего в кислородной атмосфере] Ну а водороду человечество обязано эффектным dзрывом дирижабля Hindenburg и одноименным синдромом (боязнью водорода инженерами).
Германские конструкторы вынесли цистерны с водородом и кислородом за пределы обитаемого прочного корпуса субмарины, разместив их в легком негерметичном корпусе, придав ему форму, улучшающую мореходные качества лодки. Окажется ли такое решение достаточным для обеспечения безопасности боевого корабля — покажет время, но пока отметим, что речь идет не о том, что у военных появилось нечто такое, до чего шпакам далеко (то есть — до массовых авто на топливных элементах), а о применении для решения спе ци фических задач узкоспециализированных (и дорогих!) технологий. Да и израильтяне выбрали для своих лодок класса Dolphin тот же самый, но лишенный топливных элементов проект.
Возможность боевой работы на малых (начиная с 20 метров) лубинах и в тесных местах дает "типу 212" компьютерная боевая система управления, созданная норвежским концерном Кongsberg. Скрытно оперировать в воде, среде малопрозрачной, но плотной, хорошо проводящей звук, помогают пассивные гидролокаторы — один буксируемый, размещаемый на "парусе"[Надстройка над корпусом субмарины] лодки, и несколько бортовых. Это тоже компьютерные технологии: шумы — и искусственные, моторов и винтов, и естественные, плеск волн, перекатывание камней, — улавливаются матрицами, составленными из микрофонов, прогоняются через массивы DSP и превращаются в трехмерное отображение окружающей обстановки. Корпус лодки изготовлен из немагнитных сплавов — это обеспечивает защиту от магнитных мин и от поисковых магнетометров на вертолетах. Впрочем, противолодочный геликоптер или малый противолодочный корабль могут быть встречены и огнем — в одном из шести торпедных аппаратов может устанавливаться револьверный магазин с четырьмя ракетами IDAS. Эта ракета наводится по волоконнооптическому кабелю и способна поражать цели на дальностях до 20 км. Через прочное и легкое сигнальное стекловолокно управляют и главным оружием лодки — тяжелыми торпедами DM2A4 Seehecht. (В обоих случаях по файбероптике оператору на лодке передаются сигналы с телекамер и акустических датчиков, размещенных на ракете или торпеде соответственно, а на систему управления оружия подаются команды.) Предусмотрено использование лодок для модных ныне диверсионных операций. Ну и в завершение отметим, что лодки "тип 212" создаются в тесном сотрудничестве с флотом Италии, что должно сократить расходы германских налогоплательщиков.