Выбрать главу

После этого открытия разработать метод изготовления наномембран оказалось уже делом техники. Метод включает несколько стадий, которые вполне вписываются в современную технологию изготовления чипов. Ученые уже научились делать мембраны толщиной до 5 нм и размером до 2х2 мм. Они оказались на удивление прочными. Мембрана толщиной 15 нм и размером 0,2х0,2 мм, которую выбрали для экспериментов, легко выдерживает перепад давлений в одну атмосферу.

Новые мембраны сравнительно дешевы и, как надеются экспериментаторы, быстро найдут массу применений. Их можно использовать не только в научных лабораториях и химическом производстве. С помощью наномембран можно разделять белки и другие биологические субстанции и даже фильтровать воздух в «чистых комнатах» для производства чипов. А уж в грядущих нанотехнологиях такие мембраны для фильтрации всевозможных нанорастворов будут просто незаменимы. ГА

А все-таки они квантовые!

Французские ученые осуществили «в железе» эксперимент, который известный американский физик Джон Уилер (John Wheeler) почти три десятилетия назад придумал в качестве мысленного опыта. Эта работа вновь подтвердила, что никакие ухищрения не помогут обойти законы квантовой механики.

Уилер предложил изменить схему проведения знаменитого интерференционного эксперимента, который впервые поставил английский физик Томас Юнг еще в начале XIX века. В его стандартном варианте свет от точечного источника падает на непрозрачную стену с двумя щелями и рисует на расположенном за нею экране интерференционную картину. Причем интерференция возникает лишь в том случае, если открыты обе щели. В классической физике интерференция рассматривается как свидетельство волновой природы света. Согласно же квантовой механике, свет переносят частицы с волновыми свойствами, поэтому с ее точки зрения природа этого эффекта гораздо глубже. Если бы фотоны были только частицами и ничем иным, освещенность экрана при обеих открытых щелях была бы просто суммой освещенностей, возникающих при открывании каждой из щелей по отдельности. Иначе говоря, в этом случае экран выглядел бы светлее. Однако в действительности на нем появляются светлые и темные участки интерференционной картины.

Но самое интересное в другом. Можно предположить, что такая интерференция возникает только в результате падения на экран множества фотонов, каждый из которых проходит или только через первую щель, или только через вторую. В этом случае фотоны при движении вели бы себя как обычные частицы и только при попадании на экран взаимодействовали друг с другом как волны. Однако эта гипотеза безоговорочно опровергнута экспериментом. Физики давно научились изготовлять источники единичных фотонов, следующих друг за другом через бо,льшие промежутки времени, нежели те, что требуются свету для прохождения дистанции между излучателем и экраном. Тем не менее результат от этого не меняется: при одной открытой щели интерференции нет, при двух - есть. Это и означает, что каждый фотон - не только частица, но и волна, проходящая через обе открытые щели.

С помощью двухщелевого эксперимента квантовую природу фотонов можно продемонстрировать даже эффектнее. Пусть обе щели открыты, и пусть мы каким-то образом можем следить за движением фотонов - например, с помощью промежуточных детекторов, расположенных вблизи каждой щели. Оказывается, что при включении детекторов интерференция исчезает! Таким образом, любая попытка проследить путь фотона уничтожает квантовую волновую неопределенность и делает фотон аналогом обычной классической частицы, движущейся по хорошо определенной траектории. А вот когда фотон «гуляет сам по себе», не контактируя по пути с измерительной аппаратурой, он сохраняет свой корпускулярно-волновой дуализм. Такое поведение полностью согласуется с принципами квантовой механики.

Казалось бы, вопрос закрыт. Тем не менее в 1978 году Уилер подметил еще одну возможность, которая никому не приходила в голову. Допустим, что фотон каким-то образом заранее «узнает», намерен ли экспериментатор задействовать промежуточные детекторы, и в соответствие с этим меняет свое поведение? Конечно, эта гипотеза выглядит весьма причудливо, но ведь квантовая механика вообще полна парадоксов. Во всяком случае, Уилер считал, что проверить гипотезу стоит.