Выбрать главу

  

Углеродные нанотрубки под электронным микроскопом

Второе дыхание идея космического лифта получила с появлением в 1991 году принципиально новых материалов — углеродных нанотрубок. Это протяженные цилиндрические структуры диаметром в считанные нанометры. Их можно описать как свернутые в тонкую трубочку плоские листы графита мономолекулярной толщины (хотя в реальности нанотрубки образуются иначе). В плоскости графитового слоя атомы углерода соединены в характерную гексагональную (шестиугольную) решетку, обладающую высокой прочностью, которую унаследовали и нанотрубки. По своей устойчивости на разрыв они более чем на порядок превосходят сталь и при этом имеют в шесть раз меньшую плотность. Нитка миллиметрового диаметра, состоящая из нанотрубок, теоретически могла бы выдержать груз в 60 тонн (усилие на разрыв 60 ГПа) и даже больше — самая оптимистичная приводимая в специальной литературе цифра составляет 300 ГПа.

Загвоздка, однако, в том, что сегодня никто не умеет изготавливать из нанотрубок нитки. Трубки, которые удается получить, имеют длину, измеряемую микронами, в лучшем случае — миллиметрами, и нет никаких гарантий, что параметры нитей из нанотрубок действительно когда-нибудь достигнут теоретических показателей. Во-первых, даже самая лучшая нить будет, конечно же, заметно менее прочной, чем отдельные ее волокна. Во-вторых, на прочность трубок самым плачевным образом влияют дефекты кристаллической решетки. Согласно мнению некоторых ученых, именно эти неизбежные дефекты станут непреодолимым препятствием для космического лифта. Ведь даже если в идеальных условиях мы и научимся изготавливать безупречные волокна, то повреждения от микрометеоритов и космических лучей, эрозия под действием атмосферного кислорода могут свести все усилия на нет.

Если мы попробуем подставить в формулы параметры углеродных нанотрубок, то верхняя часть троса получается всего на 20—50% толще нижней. Это значит, что трос в форме ленты толщиной с лист бумаги даже в самом широком месте не будет превосходить нескольких десятков сантиметров.

Подъемник, построенный командой Мичиганского университета (справа), впервые поднялся на высоту 60 метров, получая энергию только от солнечных батарей. На это ушло 6 минут 40 секунд при зачетном времени 1 минута. Самым быстрым стал подъемник, созданный в Университете провинции Саскачеван (Канада). Он лишь на пару секунд не уложился в отведенный норматив. На снимке внизу: последние приготовления перед запуском канадского прототипа космического лифта. Обратите внимание, что для подъема используется не трос, а тонкая широкая лента. Это избавляет от проблем с ориентацией аппарата

 

Подъем на лазерном луче

Другая важнейшая проблема, которую предстоит решить, — это создание быстрых и легких подъемников, способных взобраться по тросу по крайней мере на 36 тысяч километров (на высоту геостационарной орбиты). Собственно, сложность заключается в отсутствии достаточно энергоемких источников питания. Ведь энергозатраты на преодоление земного притяжения на пути до геостационарной орбиты составляют 49 мегаджоулей на килограмм (это не считая неизбежных потерь энергии). Для сравнения: при сжигании килограмма водород-кислородной топливной смеси выделяется всего 16 МДж. Это не значит, что на химическом топливе космический лифт не сможет работать в принципе, но по эффективности своей работы он тогда сравнится с теми же ракетами, вынужденными для выведения полезной нагрузки сжигать огромное количество топлива и сбрасывать отработавшие ступени. Еще хуже с аккумуляторами, которые, разумеется, каждый раз на пути к звездам сбрасывать не получится. Хотя тут тоже может быть уловка: кабины, идущие вниз, могут делиться выработанной при спуске электроэнергией со своими встречными партнерами. Но все это накладывает на организаторов грузопотока слишком жесткие ограничения.

Поэтому питание для своей работы (во всяком случае, на первых порах) лифт будет получать в основном с Земли. Изобретатель концепции космического лифта Юрий Арцутанов предлагал подводить электричество по вплетенным в канат металлическим полосам. Однако на нынешнем этапе эта идея не кажется столь привлекательной, поскольку усложняет конструкцию троса.

Наиболее перспективной представляется передача энергии направленными пучками видимого или СВЧ-излучения, для которого земная атмосфера прозрачна. Чтобы расходимость пучка была минимальной, можно, например, использовать лазеры. Впрочем, передать энергию — это полдела, нужно ее еще и принять. Для этого необходимо снабдить лифт высокоэффективными фотоэлектрическими преобразователями.