Не жаловало подлунный мир и пришедшее на смену античности христианство. Но, хотя источник законов в нем был иной, способ их познания по-прежнему не предполагал обращения к реальному миру. Не имея своей физики и космологии (за исключением весьма общих формулировок Книги Бытия), христианство заимствовало умозрительную античную науку и держалось за нее вплоть до начала революционных перемен эпохи Возрождения. Достоин удивления тот факт, что, например, геоцентрическая система Птолемея, не имея никаких подтверждений в Священном Писании, тем не менее воспринималась как неотъемлемая часть христианской картины мира. Так что даже Коперник рассматривал свою гелиоцентрическую систему мира не как теорию, отражающую реальный порядок вещей, а лишь как более простой и удобный способ астрономических расчетов.
Система Птолемея в виде небесной сферы, поддерживаемой титаном Атлантом. Понятие «небесная сфера» сохранилось и в современной астрономии, но теперь ее считают условной воображаемой поверхностью. Фото SPL/EAST NEWS
Геоцентрическая система Птолемея
Описывала видимые движения планет кинематически, не пытаясь искать причины этого движения. Обнаруживаемые расхождения между расчетами и наблюдениями заставляли вводить новые поправки, усложняя систему. Гелиоцентрическая система Коперника упростила расчеты, но строилась на прежнем предположении о круговых движениях планет, и ее точность тоже была низкой. Кеплер, допустив некруговые (эллиптические) орбиты, значительно повысил точность. Позднее законы Кеплера были выведены из законов Ньютона, которые легли в основу небесной механики. В современных точных расчетах учитываются также поправки, связанные с теорией относительности.
Наука нового времени
Однако подхвативший идеи Коперника Галилей не был столь осторожным и стал проверять, а как же устроен мир на самом деле. Его обращение к эксперименту следует, по большому счету, признать моментом рождения науки, во всяком случае, в современном смысле этого слова. Фактически Галилей предложил новую методологию научного исследования: вместо умозрительного познания идеальных законов он поставил перед наукой амбициозную задачу — постичь замысел Творца, изучая созданный им реальный мир. В определенном смысле такая наука была куда более христианской, чем прежняя средневековая схоластика (представляющая собой синтез христианского богословия и аристотелевой логики), постоянно ссылающаяся на авторитет Аристотеля. В самом деле, раз мир создан Творцом, то его следует изучать столь же досконально, как Писание, стремясь найти в нем безупречную божественную гармонию.
Этот подход оказался поразительно эффективным. Выяснилось, что новые законы и закономерности едва ли не сами валятся вам на голову. Причем многим из них быстро нашлись удивительно полезные применения (маятниковые часы, хронометр с пружинным балансиром, паровые машины, термометры и т. п.). Наука стала двигателем технического прогресса, впечатляющие достижения которого, выраженные в конечном счете деньгами, оружием и отчасти комфортом (то есть всем тем, что в первую очередь интересует финансирующих науку), резко укрепили доверие к новой методологии познания. Суть ее сводилась к построению естественных наук по образцу математики: от «самоочевидных» аксиом к строго доказанным теоремам. Не случайно основополагающий труд Ньютона назывался «Математические начала натуральной философии».
Расхождения теории и практики, которые для греков были имманентной проблемой, теперь стали источником задач, многие из которых удавалось успешно решить. Оказалось, что огромное количество явлений можно объяснить, исходя из небольшого числа простых и красивых законов-аксиом, которые, как считалось, открываются умозрительно, благодаря интуиции исследователя, но подтверждаются и доказываются путем опытной проверки вытекающих из них следствий. Научные теории воспринимались как свойство самого реального мира, нужно было просто их распознать, «прочитать книгу Природы», и подтвердить несколькими примерами правильность прочтения. Этот подход позднее получил название джастификационизма (от англ. justify — «оправдывать», «обосновывать»). Джастификационистский фундамент, заложенный в XVII веке трудами Галилея и Ньютона, оказался настолько крепким, что на протяжении двух столетий определял развитие науки. Но тем серьезнее оказался кризис, когда стали появляться экспериментальные данные, несовместимые с ньютоновской физикой.
«Алхимик», раскрашенная гравюра Жака Луи Перье, выполненная с картины фламандского живописца XVII века Давида Тенирса-младшего. фото LEEMAGE/EAST NEWS
Алхимия
Раньше других наук пошла по экспериментальному пути, наработав методом проб и ошибок много полезных рецептов. Свойства веществ объяснялись сочетанием в них первичных элементов-стихий, но предсказательный потенциал алхимии был очень низок, что отчасти маскировалось эзотерическим духом учения. Главное предсказание о существовании «философского камня», способного превращать металлы в золото и продлевать жизнь человека, завело алхимическую исследовательскую программу в тупик. С XVII—XVIII веков начинает развиваться химия, которая дает более последовательное объяснение свойств веществ и постепенно приходит к современной атомно-молекулярной теории.
Теорию нельзя доказать
А таких примеров к концу XIX века накопилось немало. Никак не удавалось объяснить небольшое несоответствие в движении Меркурия , открытое Леверье в 1859 году. Орбита планеты систематически «уходила» от расчетной. Отклонение было крошечным, всего 43 угловые секунды в столетие, но ведь доказательная теория, основанная на божественных законах, не может быть неточной. Другую проблему подбросила новорожденная электродинамика. Согласно уравнениям Максвелла (1864), электромагнитное взаимодействие всегда распространяется одинаково быстро — со скоростью света. Но это прямо противоречит принципу сложения скоростей в механике Ньютона: как может луч света иметь одинаковую скорость, скажем, относительно движущегося поезда и неподвижного перрона? Кроме того, не удавалось в рамках классической механики объяснить устойчивость атомов и закономерности теплового излучения.
Справиться со всеми этими проблемами позволили теория относительности и квантовая механика, которые показали, что теория Ньютона не является абсолютно точной. Даже хуже того, сами базовые принципы новых теорий оказались совершенно иными. Для концепции джастификационизма это был приговор. Ни о каких доказательствах естественно-научных теорий больше не могло быть и речи. «Открытие греками критического метода вначале породило ошибочную надежду на то, что с его помощью можно будет найти решения всех великих старых проблем, обосновать достоверность знания, доказать и оправдать наши теории. Однако эта надежда была порождена догматическим способом мышления, ибо на самом деле ничего нельзя оправдать или доказать (за пределами математики и логики)» — так резюмировал крах джастификационизма философ науки Карл Поппер в книге «Предположения и опровержения», изданной в 1963 году.
Осенью 2006 года в России стартовал первый в истории нашей страны «обезьяний процесс»: петербургская школьница Мария Шрайбер и ее отец Кирилл Шрайбер пытались в суде оспорить правомерность преподавания в школе теории эволюции. Среди аргументов, которыми истцы обосновывали свои претензии, было утверждение о том, что дарвиновская теория естественного отбора «не доказана» и является «не более чем гипотезой». Отклонив в итоге иск, суд никак не прокомментировал данное заявление, и эти слова как бы повисли в воздухе. Теперь их при каждом удобном случае повторяют противники теории эволюции. Между тем уже более сорока лет известно, что научные теории в принципе не могут быть доказаны, поскольку они содержат универсальные утверждения, а число экспериментов всегда конечно. Различие же между гипотезой и теорией состоит лишь в том, как их воспринимает научное сообщество. Широко признаваемую систему идей называют теорией, а частное предположение, нуждающееся в подтверждении (частным экспериментом или серией), — гипотезой. И в этом смысле эволюция безусловно теория.