Выбрать главу

О вращении вещества в самом центре Солнца, в радиусе менее 200 тысяч километров, пока толком сказать нечего. Акустические моды здесь мало что могут подсказать, и потому большие надежды возлагаются на еще один вид колебаний — так называемые гравитационные моды. В них роль движущей силы играет не давление, как в акустических модах, а подъем и опускание вещества в поле тяготения ядра звезды. В отличие от акустических мод, сосредоточенных в основном у поверхности, гравитационные моды «играют» в центре. Именно в них зашифрованы тайны солнечного ядра. К сожалению, с приближением к поверхности они быстро затухают. На сегодня есть лишь одно наблюдение, в котором их  как будто удалось зафиксировать, и из него следует, что внутреннее ядро Солнца вращается чуть ли не в пять раз быстрее внешнего ядра. Но эти результаты еще нуждаются в дополнительной проверке.

Модель магнитных полей в конвективной зоне, определяющих активность Солнца. В синих областях поле направлено на восток, в красных — на запад (слева, фото: HAO/UCAR) и модель  конвекции у поверхности Солнца в области глубиной 20 и шириной 48 мегаметров. Красные линии — восходящие потоки, синие — нисходящие (справа, фото: CHRIS HENZE/NASA)

Спасибо экзопланетчикам

Солнце, при всей его важности для нас, — лишь одна звезда, одна точка на графике. Для общей проверки теории звездной эволюции этого явно недостаточно. Однако изучение колебаний других звезд — очень сложная задача. На Солнце максимальная амплитуда колебаний скорости в одной моде составляет 15–20 см/с. Измерить столь крохотные сдвиги  линий можно пока лишь в спектрах ближайших (и потому ярких) звезд, да и то при использовании лучших спектрографов. Впрочем, иногда можно обойтись и без спектров. Пульсации звезды сопровождаются не только «пляской» спектральных линий, но и небольшими вариациями блеска. Главенствующую роль в астросейсмологии играют частоты пульсаций, и порой не так важно, по какому именно наблюдаемому параметру звезды они определены. Поэтому вместо трудоемкой  спектроскопии в некоторых случаях можно проводить более экономичную фотометрию, то есть вместо измерения отдельных линий в спектре контролировать лишь общую яркость звезды. Правда, и это нелегкая задача, так как колебания блеска очень малы — 0,1% и меньше, а значит, нужны очень чувствительные приемники излучения.

К счастью, таких чувствительных приборов в последнее время становится все больше — они требуются для бурно развивающихся исследований планет, находящихся вне Солнечной системы (их тоже обнаруживают по небольшим колебаниям спектральных линий и блеска звезд). И хотя  «общественную» славу таким приборам, как спектрографы HARPS (Европейская южная обсерватория, Чили) и HIRES (Обсерватория им. Кека, Гавайские о-ва, США) или космические фотометрические телескопы COROT и «Кеплер», принесли обнаруженные с их помощью экзопланеты, для специалистов не менее, а может быть, и более важен вклад этих инструментов в астросейсмические исследования. Так что неслучайно пульсации солнечного типа у другой звезды (субгиганта эты Волопаса) были впервые достоверно зарегистрированы в 1995 году — почти одновременно с открытием первой экзопланеты. Сегодня подобные пульсации зафиксированы уже у двух десятков звезд.  Особенно важны астросейсмические наблюдения для исследования конвекции в звездах. В теории этого процесса есть пробелы, и в компьютерных моделях звезд его приходится запускать, так сказать, «руками», искусственно задавая параметры конвекции. Это, конечно, не лучший способ учитывать действие механизма, который «управляет» магнитным полем солнцеподобных звезд, а на более поздних стадиях эволюции полностью меняет их физическую и химическую структуру. Астросейсмология уже позволила приблизительно определять характер конвекции для одной разновидности голубых гигантов, которые в 10 раз массивнее и в тысячи раз ярче Солнца. Физическая основа возбуждения колебаний у этих звезд не солнечная, а примерно такая же, как у цефеид. У этих звезд также удалось определить зависимость скорости вращения от радиуса. Как и у Солнца, ядро у них вращается в несколько раз быстрее слоев, лежащих ближе к поверхности.

Для обычных солнцеподобных звезд при помощи астросейсмологии удается пока измерить только базовые параметры — массу, радиус, возраст. Но в действительности и это очень много, ведь речь идет о характеристиках одиночных, то есть не входящих в двойные системы звезд, с которых прежде никакими способами нельзя было снять «мерку».

Астросейсмические наблюдения не ограничиваются солнцеподобными звездами. Очень интересными обещают стать исследования пульсаций в бывших звездных ядрах — центральных звездах планетарных туманностей и белых карликах. В этих объектах недра могут находиться не просто в твердом, но даже в кристаллическом состоянии. И здесь астросейсмология открывает возможности для тестирования не только теории звездной эволюции, но и более общих разделов физики, описывающих свойства вещества в экстремальных состояниях.