Выбрать главу

Космическая обсерватория SOHO работает с 1996 года. Благодаря ей прошлый, 23-й, цикл солнечной активности охвачен непрерывными гелиосейсмическими наблюдениями. Фото: NASA/SOHO SOLAR & HELIOSPHERIC OBSERVATORY

Дело о пропавших элементах

На сегодня большая часть наблюдений звездных осцилляций хорошо согласуется с теорией строения и эволюции звезд. Но это, конечно, не означает, что в будущем нас не поджидают сюрпризы. В качестве примера можно привести наблюдения Проциона — альфы Малого Пса. Эта звезда, одна из самых ярких на земном небе, стала в 1991 году первой, у которой обнаружились признаки пульсаций солнечного типа (хотя и не сами пульсации). На протяжении следующих 10 лет Процион неоднократно наблюдался, его пульсации были сначала просто подтверждены, а потом и подробно изучены. В 2003 году он стал первой звездой в списке целей для космического астросейсмологического телескопа MOST. Наблюдатели непрерывно следили за Проционом в течение месяца... и никаких пульсаций не обнаружили. Лишь после организации дополнительной наблюдательной кампании с участием многих наземных телескопов было окончательно доказано, что Процион действительно пульсирует, но по каким-то причинам колебания в нем затухают гораздо быстрее, чем на Солнце. В результате их спектр усложняется, и для его наблюдений требуется гораздо больше усилий. 

Есть и еще одно темное облачко на чистом и ясном небосклоне гелиосейсмологии. Высококачественные спектры Солнца, полученные несколько лет назад, как будто бы указывают, что на Солнце гораздо меньше тяжелых элементов, чем принято думать. Если до 2005 года считалось, что суммарная масса углерода, азота, кислорода, неона и прочих более тяжелых элементов составляет примерно 2,7% от массы водорода, то теперь эта оценка сократилась до 1,6%. Казалось бы, какая разница, сколько там этих примесей: полтора процента или три? Однако в моделях Солнца с «новым» химическим составом нижняя граница конвективной зоны поднимается с 500 тысяч километров от центра звезды до 510 тысяч. Разница составляет около 1,5% от солнечного радиуса, но она приводит к полному рассогласованию с гелиосейсмическими данными. С 2005 года и по настоящее время не прекращаются попытки помирить гелиосейсмологию со спектроскопией, но результата они пока не принесли. Впрочем, сама величина этого рассогласования дает представление о том, на каком уровне точности происходит сейчас изучение строения Солнца.

Несмотря на эти проблемы, а в чем-то и благодаря им, астросейсмология сейчас находится на подъеме. Практически ни одна крупная астрономическая конференция не обходится без астросейсмологической секции. У астросейсмологов есть  свой научный журнал (Communications in Asteroseismology), свои космические телескопы, свои наземные наблюдательные сети. В астросейсмологии особенно наглядным становится истинно глобальный характер современной астрономии. Для надежного определения частот звездных колебаний необходимы многочасовые и даже многодневные сеансы наблюдений, что невозможно без согласованного использования телескопов, разбросанных по всему земному шару. Сейчас такие наблюдения проводятся при помощи консорциума Всеземного телескопа (Whole Earth Telescope), объединяющего телескопы «общего пользования» двух десятков обсерваторий.  В России в его работе принимают участие телескопы обсерватории на пике Терскол (Кавказ). В ходе тщательно спланированной кампании при любой возможности проводятся наблюдения одного и того же объекта, которые затем «сшиваются» в один наблюдательный ряд. В разработке находятся планы создания специализированной сети телескопов SONG, которая будет состоять из восьми инструментов, по четыре в каждом полушарии. Подобная сеть для наблюдений Солнца (GONG) уже создана и активно работает.

Чрезвычайно перспективна Антарктида, где наилучшие на Земле условия для длительных астрономических наблюдений. К ней давно уже присматриваются не только астросейсмологи, но и представители других отраслей астрономии. В Европе есть проект установки 40-сантиметрового астросейсмографа SIAMOIS на франко-итальянской станции Конкордия.